Upper Basin Storage Studies

Explanation: The actual amount of wetland storage that is available in the Devils Lake basin has been a matter of some debate in recent years. The following is a brief summary of the studies that have been conducted by various agencies or teams of agencies examining the acreage, and storage potential of wetlands in the Devils Lake basin.

1) **Wetland Acreage and Storage Studies**
 a) **Author:** Ludden, A.P., D.L. Frink, and D.H. Johnson
 Year: 1983
 Title: Water storage capacity of natural wetland depressions in the Devils Lake Basin of North Dakota
 Publisher: Journal of Soil and Water Conservation 38:1
 Findings:
 - Estimate of Wetlands Acreage (Drained and Undrained) in the DL Basin: (Remaining: 412,000 acres)
 - Estimate of Wetland Storage in the DL Basin (Drained and Undrained) in the DL Basin:
 - 2-Year Event: 116,000 acre-feet
 - 100-Year Event: 435,000 acre-feet
 - Average Depth of Wetlands: 19.1 inches (1.59 feet) *Annotated in article*
 - Maximum Total Storage Remaining (Drained and Undrained): 657,000 acre-feet
 - Average Annual Evapotranspiration (Based on ND PPR): 29.9 inches
 Limitations: Did not examine the role of evapotranspiration, climate, and antecedent moisture in storage. Did not consider storage of waterbodies larger than one 1/4 section (160 acres). Assumed uniform volume for wetlands. Limited topographical resolution. Evapotranspiration estimated based upon average for North Dakota prairie pothole region, not specific to Devils Lake. Storage of anthropogenic depressions was eliminated or reduced.

 b) **Author:** W.M. Schuh (NDSWC)
 Year: 1996
 Title: Drained and Partially Drained Wetlands in the Devils Lake Basin
 Publisher: NDSWC Memorandum to Stan Hanson
 Findings:
 - Estimate of Drained Wetlands in the Devils Lake basin (207 samples in DL basin):
 - Completely Drained Wetlands: 28,869 acres
 - Partially Drained Wetlands: 40,521 acres
 - Total Drained Wetlands (95% CI) 69,390 acres
 Limitations: Did not estimate wetland acreage lost between cessation of NWI sampling and “Swampbuster.” Limited topographical resolution.

 c) **Author:** Sprynczynatyk, D.A. (NDSWC)
 Year: 1996
 Title: Letter to Steve Blomeke (Natl. Wildlife Federation)
 Publisher: The North Dakota State Water Commission (Letter)
 Findings:
 - Summary of Storage for Three Different Frequency Rain Events:
 - 2 Year: 7.9 inches-14,912 acre-feet of storage
 - 10 Year: 11.8 inches-22,143 acre-feet of storage
 - 25 Year: 14.6 inches-27,340 acre-feet of storage
 Limitations: Storage estimates were based upon wetland being completely dry prior to event. Limited topographical resolution.
d)
Author: Sprynczynatyk, D.A. (NDSWC), and A.J. Sapa (USFWS)
Year: 1997
Title: Untitled NDSWC & USFWS letter
Publisher: Letter to Steve Blomeke (Natl. wildlife Federation) and Roger Beaver, (DLBJWRB)
Findings:
- Estimate of Undrained Wetland Acres Remaining as of 1979(NWI): 252,460 acres
- Minimum Estimate of Altered Wetlands As of 1979(NWI)
 - Completely Drained: 25,490 acres
 - Partially Drained: 34,000 acres
- Assumed Wetland Loss Between 1979 and “Swampbuster” Act: 41,000 acres
- Total Wetlands Altered as of 1985(Personal Calculation 1): 100,490 acres
- Total Wetland Area(Personal Calculation 2): 352,950 acres
- Estimated Drained Wetland Storage: Based on 60,000 acres (w/out post 1979 additional 41,000 acres) drained wetland acres, utilizing Ludden(1983), Best(1978)Range of 156,000-294,000 acre-feet
- Additional Storage: Available above current on upper basin lakes: 33,250 acre-feet
Limitations:
- Did not extrapolate lost storage based upon additional acreage.
- Relied exclusively upon literature review, with no ground-truthing.
- Did not examine the role of evapotranspiration, climate, and antecedent moisture in storage.
- Limited topographical resolution.

e)
Author: Sapa, A.J. (USFWS)
Year: 1997
Title: Letter to Steve Blomeke (Natl. Wildlife Federation)
Publisher: United States Fish & Wildlife Service
Findings:
- Estimate of Original Wetland Acreage in the DL basin: 400,000 acres
- Estimate of Drained Wetland Acreage in the DL basin: 189,000 acres
- Estimate of Remaining Wetland Acreage in the DL basin: 211,000 acres
- Estimated Range of Storage of Drained Wetlands in the DL basin: 491,400-926,100 acre-feet
- Estimate of Maximum Storage of Remaining Wetlands in the DL basin: 657,000 acre-feet
- Estimate Maximum Storage of Original Wetland Acreage in the DL basin (personal calculation): 1,148,400-1,583,100 acre-feet
- Estimate of Drained Hydric-Soil Acreage in the DL basin as of 1980 (NRCS source): 142,000 acres
- Estimate of Required Wetland Acreage Restoration to Hold 75,000 Acres: 43,000 acres
- Estimated Evaporation Rate (As from Shjeflo, 1968): 25.32 inches annually
- Estimated Evapotranspiration Rate (As from Ludden et al. 1983): 29.9 inches annually
- Estimated Seepage (Groundwater Loss?): 7.2 inches annually
- Max Wetland Depth (Ludden, 1983, with # number changes to reflect revision): 19.1 inches
- Estimate of Average Original Wetland Storage/Depth (Personal Calculation: Storage of Original Wetlands/Original Wet Acres): 47.5 inches
- Estimate of Average Drained Wetland Storage/Depth (Personal Calculation: Min-Max Storage of Drained Wetlands/Drained Wet Acres): 31.2 inches to 58.8 inches
Limitations:
- Evapotranspiration estimated based upon average for North Dakota prairie pothole region, not specific to Devils Lake.
- Analysis not based on specific hydrological studies.
f)
Author: Gehringer, M. and M. Hove (State Water Commission)
Year: 1998
Title: Assessment of Drainage in the Devils Lake Basin
Publisher: North Dakota State Water Commission
Findings: Number of Drained Wetlands in the Devils Lake Basin (includes Stump): 23,000
Acreage of Drained Wetlands in the Devils Lake Basin (includes Stump): 41,000 acres
Volume of Drained Wetlands in the Devils Lake Basin (includes Stump): 82,000 acre-feet
Limitations: Assumed an average wetland depth of two feet. Wetland data is based upon NRCS wetlands maps of almost the entire basin, and GIS delineations of those maps. Study assumes that all drained wetlands do contribute to Devils Lake or Stump Lake.

g)
Author: Bell, A., D. Eckhardt, and M. Pucherelli (Bureau of Reclamation)
Year: 1999
Title: Pilot Project: Wetlands Inventory and Drained Wetlands Water Storage Capacity Estimation for the St. Joe-Calio Coulee Subbasin of the Greater Devils Lake Basin, North Dakota
Findings: Number of Existing Wetlands in St. Joe-Calio Coulee: 4,309
Acreage of Existing Wetlands in the St. Joe-Calio Coulee: 21,505 acres
Average Maximum Depth of Depressions in the St. Joe-Calio Coulee: 8.6 inches
Number of Drained Wetlands in the St. Joe-Calio Coulee: 1,898
Acreage of Drained Wetlands in the St. Joe-Calio Coulee: 4,749 acres
Storage of Drained Wetlands in the St. Joe-Calio Coulee: Estimate of 3,400 acre-feet (95% CI)
Estimate of Drained Wetland Storage for Entire DL Basin based on St. Joe-Calio Coulee Numbers: 53,408 acre-feet (95% CI)
Estimate of Total Wetland Storage in the Entire DL Basin based on St. Joe-Calio Coulee Numbers: 524,000 acre-feet
Estimate of Drained Wetland Storage (Total Wetland Storage-Drained Wetland Storage) (Personal Calculation): 470,592 acre-feet
Limitations: Estimates of basin-wide wetland storage based upon small, extensively studied data subset. Difficulty in estimating drained wetland area. Limited ground-truthing. Limited topographical resolution. Did not examine the role of evapotranspiration, climate, and antecedent moisture in storage.

h)
Author: Doeing, B.J., and S.M. Forman (West Consultants, Inc. on Behalf of USACE)
Year: 2001
Title: Final Report: Devils Lake Upper Basin storage Evaluation
Publisher: West Consultants, Inc. Prepared for United States Army Corps of Engineers
Findings: Number of Possibly Intact/Undrained Wetlands in the DL Basin: 63,458
Possibly Intact/Undrained Wetland Acreage in the DL Basin: 201,990 acres
Estimated Storage of Possibly Intact/Undrained Wetlands in the DL Basin: 481,604 acre-feet
Number of Possible Drained Wetlands in the DL Basin: 52,210
Possibly Drained Wetland Acreage in the DL Basin: 92,429 acres
Estimated Storage of Possibly Drained Wetlands in the DL Basin: 132,729 acre-feet
Total Number of Wetlands in the DL Basin: 115,668
Total Acreage of Wetlands in the DL Basin: 294,419 acres
Total Storage of Wetlands in the DL Basin: 614,333 acre-feet
Restoration of 25% of Possibly Drained Wetlands (Option B) Acreage: 19,472 acres
Restoration of 25% of Possibly Drained Wetlands (Option B) Storage: 31,431 acre-feet
Restoration of 50% of Possibly Drained Wetlands (Option C) Acreage: 39,681 acres
Restoration of 50% of Possibly Drained Wetlands (Option C) Storage: 63,608 acre-feet
Restoration of 75% of Possibly Drained Wetlands (Option D) Acreage: 59,872 acres
Restoration of 75% of Possibly Drained Wetlands (Option D) Storage: 94,850 acre-feet
Restoration of 100% of Possibly Drained Wetlands (Option D) Acreage: 79,762 acres
Restoration of 100% of Possibly Drained Wetlands (Option D) Storage: 127,835 acre-feet
Average Annual Runoff Reduction (10 Climate Sequences Average)(Option B): 6,836 acre-feet
Average Annual Runoff Reduction (10 Climate Sequences Average)(Option C): 12,910 acre-feet
Average Annual Runoff Reduction (10 Climate Sequences Average)(Option D): 18,403 acre-feet
Average Annual Runoff Reduction (10 Climate Sequences Average)(Option B): 23,841 acre-feet
Average Annual Runoff Reduction (Wet Scenario)(Option B): 7,959 acre-feet
Average Annual Runoff Reduction (Wet Scenario)(Option C): 15,643 acre-feet
Average Annual Runoff Reduction (Wet Scenario)(Option B): 23,502 acre-feet
Average Annual Runoff Reduction (Wet Scenario)(Option B): 31,193 acre-feet
Average Evaporation from a Depression: >20 inches annually

Limitations: Evapotranspiration was likely underestimated. Did not examine the effects of climate completely enough. No ground-truthing of estimates. Wetland restoration could be optimized to increase wetland storage for Options B-D.

Author: Vining, K.C. (USGS)
Year: 2002
Title: Simulation of Streamflow and Wetland Storage, Starkweather Coulee Subbasin, North Dakota, Water Years 1981-98
Publisher: USGS, Water-Resources Investigations Report 02-4113
Findings: Average Wetland Depth in Starkweather Coulee: 2.21 feet
Total Maximum Wetland Area in Starkweather Coulee: 30,890 acres
Total Maximum Wetland Volume in Starkweather Coulee: 68,270 acre-feet
Average Reduction in Spillage from Wetlands with Removal of Drains (1981-1998): 49%
1997-Event Reduction in Spillage from Wetlands with Removal of Drains: 20%

Limitations: Did not model hydrological effects of frozen soil. Study was limited to hydrological factors being estimated based upon one wetland analyzed per hydrological response unit. Other hydrological modeling limitations, due to an extremely complex system.