THE CLEANUP AND PROTECTION OF THE WAHPETON BURIED VALLEY AQUIFER SYSTEM RICHLAND COUNTY, NORTH DAKOTA: GROUND-WATER DATA By DAVID P. RIPLEY Water Resource Investigation 20, Part I North Dakota State Water Commission Prepared by the North Dakota State Water Commission # THE CLEANUP AND PROTECTION OF THE WAHPETON BURIED VALLEY AQUIFER SYSTEM, RICHLAND COUNTY, NORTH DAKOTA: GROUND-WATER DATA By David P. Ripley North Dakota State Water Commission Published by North Dakota State Water Commission State Office Building 900 East Boulevard Bismarck, North Dakota 58505 Water Resource Investigation 20, Part I North Dakota State Water Commission David A. Sprynczynatyk, State Engineer # TABLE OF CONTENTS | | | <u>Page</u> | |------------------|--|-------------| | INTRODUC | TION | 1 | | PURPOSES | *************************************** | 1 | | LOCATION- | -NUMBERING SYSTEM | 1 | | ACKNOWL | EDGEMENTS | 3 | | EXPLANAT
DATA | ION OF DATA TABLES AND METHODS OF
A COLLECTION | . 4 | | REFERENC | DES | . 9 | | | ILLUSTRATIONS | | | FIGURE
1. | Location-numbering system | 2 | | TABLES
I. | Table of lithologic logs of wells and test holes | 10 | | 11. | Table of water levels in observation wells and piezometers | 196 | | III. | Table of chemical analyses | 265 | | PLATES
1. | Map showing the location of test holes, observation wells and production wells in the Wahpeton study area In 1 | Pocket | | 2. | Map showing the location of production wells, observation wells, plant site, beet storage, reservoir, and ponds in the N1/2 of Section 20, Township 133 North, Range 47 West | Pocket | #### INTRODUCTION The chemical character of one of the city of Wahpeton's three city production wells was observed to have been changing in 1984. This study outlines the nature of the problems that caused that change, as well as the measures that were taken to clean up and protect the Wahpeton Buried Valley aquifer system in which the Wahpeton city wells are completed. Plate 1 shows the location of the study area and plate 2 the locations of wells in the N1/2 of Section 20, Township 133 North, Range 47 West. The results of this study will be published in two reports. This report is the first of the two reports, and is a compilation of the geologic and hydrologic data collected during this and previous investigations in the area. A subsequent report, North Dakota State Water Commission Water Resource Investigation 20, Part II, is an interpretive report which describes the hydrogeology of the Wahpeton Buried Valley aquifer system, the contamination problem, the cleanup, and the preventative measures that were taken. #### **PURPOSES** The purposes of this investigation were to determine the nature of the contamination problem, to determine how to clean up the Wahpeton Buried Valley aquifer, and to determine how to prevent additional contamination problems in the future. #### LOCATION NUMBERING SYSTEM The location numbering system used in this report (fig. 1) is based on the Federal system of rectangular surveys of the public lands. The first numeral denotes the township, the second denotes the range, and FIGURE 1. Location-numbering system. the third denotes the section in which the well or test hole is located. The letters A, B, C, and D designate, respectively the northeast, northwest, southwest, and southeast quarter section, quarter-quarter section, and quarter-quarter-quarter section (10 acre or 4 hectare tract); thus, well 133-047-19DAA would be located in the NE1/4 of the NE1/4 of the SE1/4 of Section 19, Township 133 North, Range 47 West. Consecutive terminal numbers are added if more than one well or test hole is recorded within a 10-acre (4-ha) tract. For parts of the north half of Section 20, Township 133 North, Range 47 West the density of wells was so great that 9 numbers in a ten acre area was insufficient to label all wells. In this study each 10 acre area was further divided into 2.5 and 0.625 acre areas in the same manner described above. Thus, well 133-47-20ABDDA9 is the ninth well located in the NE1/4 of the SE1/4 of the SE 1/4 of the NW1/4 of the NE1/4 of Section 20, Township 133 North, Range 47 West. #### **ACKNOWLEDGEMENTS** This ND State Water Commission (SWC) investigation received support from the Minn-Dak Farmers Cooperative, Inc. (MDFC), the city of Wahpeton, and the ND Department of Health (DOH). Thanks to John Groneman, MDFC, for his flexible support and insightful discussions, and to all of his staff, particularly Pete Jensen, for the chemical work and Dennis Kallstrom for field support. Thanks also to Lyle Mitzel and his staff, city of Wahpeton, for the cooperative operation of Wahpeton's water supply, and to Rick Nelson, DOH, for health considerations regarding the Wahpeton city water supply. Recognition is due the following personnel of the SWC: Alain Kahil, Larry Froelich, Lou Smith, Gary Calheim, Lewis Knutson, Roger Schmid, Gary Sunderland, and Al Comeskey for drilling and logging test holes and for contributions to the understanding of the stratigraphy; Jim MacArthur, Kelvin Kunz, Mike Hove, and Chris Bader, for gathering field data; and Garvin Muri and Mary Osborne for the chemical analyses of water samples. Special appreciation is also expressed to Milt Lindvig for his guidance as this unique study evolved, and to Bob Shaver, whose earlier work with Schoeller diagrams (Shaver, 1985) provided the tools needed to make some semblance of chemical order out of this complex problem. # EXPLANATION OF TABLES AND METHODS OF DATA COLLECTION The data in this report are listed in tables 1-3. The points of collection are shown on plates 1 and 2. The data consist of the following: 1) lithologic logs of wells, piezometers, and test holes; 2) water-level measurements in observation wells and piezometers; 3) chemical analyses of ground water and surface water. Depths, water quality, lithologies, and water levels of wells and test holes tapping the different aquifers can be determined from the tables. However, use of the data as a guide to conditions at different sites should be made with caution because of the lenticular character of the water-bearing materials and varying water quality in some aquifers. # Logs of Wells, Piezometers, and Test Holes Logs collected from water-well drillers and other sources and logs of test holes drilled as part of this investigation are included in Table 1. Minor changes in word order have been made on some of the driller's logs, and logs of some of the test holes drilled during this and prior investigations. Some of the logs have geophysical logs in addition to a description of the materials penetrated. The geophysical logs are useful for geologic correlation purposes. These logs are not published in this report but are available for inspection at the North Dakota State Water Commission office in Bismarck, ND. Grain-size determinations refer to the Wentworth (1922) size scale. Most of the observation wells were constructed with 1 1/4" or 2" diameter ABS (acrylonitrile-Butadiene-Styrene) or PVC (polyvinyl chloride) pipe. The screens in these wells were generally 3 to 10 feet in length and either plastic, galvanized, or stainless steel with an attached check valve joined to the bottom of the pipe. The screens were most commonly 0.018 or 0.012 inch slot size. The components of an observation well were assembled on the ground and then lowered into the drill hole. The screen was set at the desired depth, the well back-flushed with clear water to clean the aquifer material and bore hole of drilling fluid, and compressed air pumped into the well to collapse the formation around the screen. The annulus was filled to ground level with drill cuttings. Each new observation well was pumped for several hours to assure a good hydrologic connection between the well and the aquifer. Pumping was accomplished with an airline connected to a small, trailermounted air compressor driven by a gasoline engine. Nests of piezometers were also constructed for this study. Construction of the piezometer nests involved the drilling of an initial deep test hole to determine the number of piezometers to be installed at a particular site. The initial deep test hole also served as the hole for the deep piezometer. First, the desired length of casing and screen were inserted into the test hole. Silica sand was then placed around the screen using a tremie pipe. After the silica sand was installed around the screen the tremie pipe was lifted so that the bottom of the tremie pipe was a few feet above the top of the sand pack. Neat cement grout was then injected down the tremie pipe and upward in the annular space. This process continued until the grout came up the annulus to land surface. After the grout settled, additional grout was poured down the hole until the annular space was filled to land surface. The grout was allowed to "set" and then the piezometers were slugged with a small quantity of fresh water and pumped with air for development except for those piezometers where the water level was near the screen. Those piezometers where the water level was near the screen were bailed for development. Subsequent piezometers were completed at each nest site by moving the drilling rig ahead 10 to 20 feet and drilling the next hole. As few as one, or as many as five, piezometers were installed at various depths at the same site using this technique. #### Water Levels in Selected Wells and Piezometers Table 2 lists the monthly, quarterly, and intermittently measured water levels in selected wells and piezometers, in feet below or above land surface and in elevations. The reference datum for land-surface elevation is the National Geodetic Vertical Datum (NGVD). ### Sampling and Analytical Procedures The chemical composition and physical properties of
water are reported in the Table of Chemical Analyses (Table III). The chemical analyses were conducted on water samples collected from selected production wells, observation wells, and piezometers. The water sampling procedure involved the collection of 250 or 500 milliliters (ml) of raw water, filtered water, and filtered and acidified (nitric acid) water. Field measurements of specific conductance and water temperature were also made. Water temperature was, however, measured at land surface and does not represent an in-situ temperature. The pH was measured in the lab. Water samples were obtained from domestic, industrial, and city supply wells by using the existing pumps. SWC observation wells and piezometers, as well as MDFC piezometers were sampled using two methods: airlift and bailing. Airlift sampling was accomplished with a small diameter rubber hose attached to a portable air compressor. Sampling with a bailer involved the removal of at least two casing volumes of water by airlift and/or bailing techniques to introduce formation water into the well. After evacuating at least two casing volumes of water, a variable capacity point source bailer (pvc material) was lowered to just above the top of the well screen, except when the water level was close to the screened interval, in which case the bailer was extended into the screened interval. Bailing continued until enough water was secured for the sample. Samples were analyzed at one of three laboratories. The three labs were: the SWC lab, the MDFC lab, and the DOH lab. The laboratory procedures for each of the three labs differed. The SWC lab analyzed the four cations (calcium, magnesium, sodium, and potassium) utilizing an atomic adsorption unit. Nitric acid and an ionization inhibitor (lanthanum chloride) were used. The dilution ranged from 1:5 to 1:50, except for potassium (K) which was almost entirely undiluted except for an occasional 1:10 dilution. The chloride (Cl) was determined by electrode titration, as was the bicarbonate (HCO₃). The sulfate (SO₄) was determined by a gravimetric method. The DOH lab analyzed the four cations utilizing an inductive coupled argon plasma (ICAP) method. The chloride was determined by an automated ferrocyanide process. The bicarbonate determination was accomplished with a potentiometric titration process, and the sulfate with the ICAP procedure. The MDFC lab utilized an atomic adsorption spectrophotometer for determination of all cation concentrations. The ionization inhibitor was cesium chloride. Nitric acid was added to each sample, and dilutions ranged from undiluted to 1:10 to 1:100. All anions were determined using Dionex ion chromotography. The Cl and SO₄ were generally diluted 1:100, and the HCO₃ were generally 1:1 or 1:5. # SELECTED REFERENCES - Baker, C.H., Jr., 1966, Geology and Ground Water Resources of Richland County, North Dakota; Part II, Basic Data: North Dakota Geological Survey Bulletin 46 and North Dakota State Water Commission County Ground Water Study 7, 170 p. -1967, Geology and Ground Water Resources of Richland County, North Dakota; Part I, Geology: North Dakota Geological Survey Bulletin 46 and North Dakota State Water Commission County Ground Water Study 7, 45 p. - Baker, C.H., Jr., and Paulson, Q.F., 1967, Geology and Ground Water Resources of Richland County, North Dakota; Part III, Ground Water Resources: North Dakota Geological Survey Bulletin 46 and North Dakota State Water Commission County Ground Water Study 7, 48 p. - Bluemle, J.P., 1972, Guide to the geology of southeastern North Dakota: North Dakota Geological Survey Educational Series 3, 37 p. -1988, Guide to the geology of southeastern North Dakota, revised edition: North Dakota Geological Survey Educational Series 18, 36 p. - Froelich, L.J., 1974, Geohydrology of the Wahpeton area, Richland County, North Dakota, ND Ground-Water Study No. 76, 91 p. - Schmid, R.W., 1970, Wahpeton aquifer test: North Dakota State Water Commission open-file report. - Shaver, R.B., 1985, A hydrochemical approach to the analysis of ground-water flow in the Spiritwood aquifer system, Dickey and parts of LaMoure and Sargent Counties, North Dakota, ND Water Resource Investigation No. 1, 102 p. - Wentworth, C.K., 1922, A scale of grade and class terms for clastic sediments: Journal of Geology, v. 30, p. 377-392. TABLE I. Table of Lithologic Logs of Wells and Test Holes. Location: 133-47-7ADD Use of well: Observation Owner and number: SWC 3955 Principal aquifer: Reworked Dakota Sand Depth drilled (ft.): 348 Altitude of land surface (ft., msl): 955.2 (S) Screened interval (ft.):318-324 Lithologic log from: SWC Casing diameter: 1.25" Comments: Date completed: 5/21/70 | Unit description | Thickness (f | t.) Depth (ft.) | |---|--------------|-----------------| | Topsoil, pebbly silt loam, black | 2 | 0 - 2 | | Clay, slightly silty with sand grains and pebbles, yellowish and brownish gray, soft, cohesive, moderately plastic, oxidized (till) | 20 | 2 - 22 | | Clay, silty to sandy with coarse sand grains
and pebbles, olive gray, moderately soft,
cohesive, slightly to moderately plastic
(till) interbedded with numerous lenses of
very fine to medium sand | 38 | 22 - 60 | | Sand, medium, light olive gray, well-sorted, uniform, subrounded, mostly quartz with some carbonates and shale | 9 | 60 - 69 | | Clay, silty with occasional sand grains and pebbles, olive gray and dark greenish gray, moderately soft to slightly hard, chunky, cohesive, fairly smooth and tight, contains blocks of bedrock clay and silt (till) | 32 | 69 -101 | | Sand, fine and medium, gray, moderately sorted, subangular to subrounded, mostly quartz and granitics with shale and carbonates, occasional lignite chips, fairly clean | 34 | 101 -135 | | Clay, very silty to sandy with pebbles, generally olive gray but contains blocks and chunks of white, gray, green, black and brown clay, silt and sandy clay, also lenses of sand and brown gravel and coarse sand that looks like partially decomposed granite; highly variable composition (till) | 55 | 135 -190 | | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Clay, white, green and gray, smooth, tight, moderately soft to slightly hard, cohesive to slightly crumbly, highly bentonitic, turned mud very thick (doubtfully bedrock) | 14 | 190 -204 | | Silt and very fine to medium sand with interbedded clay, varigated from white to black with green and brown, loose to moderately cohesive, smooth to gritty, non to highly calcareous, highly variable, drills tight to real easy, possibly a preglacial alluvium or channel fill | 81 | 204 -285 | | Sand, very fine to very coarse, white,
subangular to rounded, predominantly
quartz but contains a little shale and
lignite, occasional carbonates, some
interbedded soft, white, chalky-like,
noncalcareous clay | 56 | 285 -341 | | Clay, greenish white, soft, noncalcareous, contains occasional quartz grains, weathered granite | 7 | 341 -348 | | Granite, extremely hard, white with small black, hornblende (?) specks | | 348 | | THE RECORD AND SAMPLE | DESCRI | PTION | | |---|----------------|--------------|---------------------------------------| | Test Hole No. 3965 Location/33 4/2 7 C | | | 5-24- | | County P. //2 - | 14 | 14 | 3 47 | | County Richland Total Depth 280 D | epth to B | edrock | 232 | | Alutude 937 | _ Source _f | lara s | hast | | Electric Log good, fair, poor, none | | 47 47 | | | | | | | | Water sample and or other information: | | | | | no obs well-drilled hole on road | | _ | 7 | | | | フー | 133 | | | | : 7 | Ιν. | | | | * | | | | cdd | | | | SAMPLE DESCRIPTION AND DRILLING CONDITIONS | | 7 | | | | THICK-
NESS | FROM | DEPTH TO | | Fr Road fill, clay, brown | | | | | | -6 | -0 | | | Clay siffy to dearly ill | | | | | Clay, sity to st. soudy with occassional sd. grain and pebbles, mod olive brown, mod. soft, | خ | | · · · · · · · · · · · · · · · · · · · | | me pentiles, mod of we brown, mod satt, | <u> </u> | | | | cahesive, med plastic (Till) | 2 | 6 | /3 | | | | | | | Clay, sifty to sondy with pebbles and sitty | | | 1 | | May laxers, olive gray, soft to mad | | | | | Seft sehanis | | | : | | Seft, cahesive, plastice (T.11) | 12 | 13 | 30 | | AL III | | | | | May, silly, dark plive gray with brownish | | | | | Stricts, mod. cott, co hesive of 1.4% | | | ;
; | | to mod plastic, tight, smooth | 2 | | | | | / | 30 | 37 | | | | | i | | SWC Form No. 129 | | 1 | - | | SAMPLE DESCRIPTION AND DRILLING CONDITIONS | | DEPTH | | |---|------|-------------|-------------| | Silt, st. dayer with long fine sand, light | | FROM | TO | | greens, soft, st. cohesive, neaplastic | + | | | | mily | | | | | in luy | 6 | 32 | 43 | | | | | | | Schesice mad shale of the de hard | | | | | cohesive, mod plastice to st. briffle, | | | | | Smooth, aily, stippery, tight, interhedles | | | | | Silt and sound and till | 16 | 43 | 5-5 | | Sit 1.4 1. | | · | | | houseich intel !! (| | - | | | brownish, interbodded with day and charge | | ** | | | the sand loose to mod cohesive | 30 | 54 | 89 | | and year (a. 1 C. 11/1 11 | | | | | loose mad la dine slightly silly, gray, | | | | | loose, mad
well-sorted generally subrounded | | | | | grad quarts with some shale and occassioned | / | | | | tight engs | -6 | 89 | 95 | | and fine to medium, interbodded, sorted | | | | | in leases, subjugular to subjounded | | | | | mostly granifies with shake | | | | | 1 1 STIGHTS | 25 | 95 | 120 | | nd, medium to coarse, interbedded | | | · | | ubangular and subrounded, mostly | - | | | | renities dale and cade | 49 | (20 | 100 | | SWCC FORM No. 129 (Continuation) BUY NORTH DAKOTA PRODUCTS- | // / | 20 | Bks. 9-6 | Test Hole No. 3965 (continued) | SAMDLE DESCRIPTION | | | | |--|-------------|------|------| | SAMPLE DESCRIPTION AND DRILLING CONDITIONS | THICK | - I | EPTH | | Sand, coarse to very coarse, well-sorted, | , | TROM | TO | | generally subangular, mostly granitus | | | | | and carbonates with shale, losse, | | | | | clean, toxing some water | | - | | | some water | 3/ | 169 | 200 | | Sand as share, with fine gravel, passify | | | | | Some medium gravel | | - | | | 9000 | 37 | 200 | 237 | | Sillistage dans 1 1 1 | | | | | Sillstone, clayer to sandy, brownish black, | | | | | J. trable, (arbanacance) | | | | | hones/esreous | 12 | 237 | 249 | | 9-6-11 | | | | | Shale, black, hard, tight, brittle, smooth | 31 | 249 | 280 | * | | | | | | | | | | - | - | | SWCC FORM No. 129 (Continuation) BUY NORTH DAKOTA PRODUCTS | | | į | Location: 133-47-8CDD Use of well: Test hole Owner and number: SWC 3964 Principal aquifer: Depth drilled (ft.): 220 Altitude of land surface (ft., msl): 959 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 5/24/70 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil, pebbly silty loam, black | . 2 | 0 - 2 | | Clay, silty to sandy with pebbles, yellowish gray to moderately olive brown with reddish streaks, moderately soft, cohesive, slightly to moderately plastic, oxidized (till) | 15 | 2 - 17 | | Clay, very silty to sandy with pebbles and numerous lenses of sand and fine gravel, light olive gray to olive gray, moderately soft to slightly hard, chunky, tight (till) | 19 | 17 - 36 | | Silt, clayey to sandy, interbedded, light olive
gray, soft to moderately soft, moderately
cohesive to slightly friable, calcareous | 18 | 36 - 54 | | Gravel, fine, sandy with interbedded very sandy till, gravel mostly granitics and carbonates, till light olive gray mostly quartz with lignite chips and shale grains, slightly hard but crumbles under pressure, rocky drilling, taking water | 43 | 54 - 97 | | Sand, very fine to fine, clayey with pebbles,
light olive gray, slightly hard, chunky,
crumbly, gritty, tightly compacted (till) | 11 | 97 -108 | | Clay, dark olive gray, moderately soft, cohesive moderately plastic, smooth, tight, oily | 5 | 108 -113 | | Till, as above, very sandy | 31 | 113 -144 | | Clay, silty, olive gray, moderately soft, cohesive, plastic | 4 | 144 -148 | | Sand, fine to coarse, interbedded, sorted in lenses, subangular to rounded, coarser fraction mostly granitics and carbonates, finer mainly quartz with shale, loose | 21 | 148 -169 | | Unit description | Thickness (| ft.) | Depth (ft.) | |---|-------------|------|-------------| | Silt, clayey, light olive gray to olive gray,
soft, moderately cohesive, slightly to
moderately plastic, calcareous | 14 | * | 169 -183 | | Gravel, fine, sandy, sorted, subangular to subrounded, loose, appears to be oxidized, mostly granitics, carbonates, shale and some siltstone | 3 | * | 183 -186 | | Shale, black, hard, carbonaceous, gaseous, noncalcareous, smooth, tight, brittle, some interbedded brown silt and clayey, micaceous, very fine sand | 34 | | 186 -220 | Location: 133-47-16CAD Use of well: Observation Owner and number: SWC 3773 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 220 Altitude of land surface (ft., msl): 951.6 (S) Screened interval (ft.): 107-110 Lithologic log from: SWC Casing diameter: 1.25" Comments: destroyed Date completed: 8/21/69 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil, sandy clay loam, black | 2 | 0 - 2 | | Sand, fine to coarse, yellowish gray to reddish brown, contains lenses of fine gravel and soft yellowish gray clay, interbedded, oxidized | 13 | 2 - 15 | | Clay and silty clay, light olive gray to olive gray, soft, cohesive, plastic, smooth, sticky, some very fine sand | 14 | 15 - 29 | | Clay, silty and sandy with coarse sand grains, pebbles, and cobbles, olive gray, medium soft, moderately cohesive, slightly plastic (till) | 10 | 29 - 39 | | Sand, coarse to very coarse with fine gravel,
generally subangular, moderately sorted,
predominantly granitics with limestone
and dolomite, clean | 4 | 39 - 43 | | Clay, silty and sandy with pebbles, and interbedded sand and gravel lenses, olive gray, moderately soft, moderately cohesive, slightly plastic, drills sporadically (till) | 16 | 43 - 59 | | Clay, moderately soft to slightly hard, olive gray to dark olive gray, brittle, crumbly, waxy, tight, smooth | 13 | 59 - 72 | | Clay, silty to sandy with pebbles, olive gray (till) contains lenses of sorted clay, silt, sand and gravel lenses, all mixed up | 26 | 72 - 98 | | Sand, coarse, well-sorted, subangular to subrounded, clean, predominantly quartz and other granitic derivatives with limestone and dolomite | 14 | 98 -112 | | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Sand, as above, mixed with till and fine gravel | 13 | 112-125 | | Clay, silt, sandy clay and clayey fine sand, intermixed and interbedded with very sandy till, drills smooth and easy except for occasional cobble, generally moderately soft to slightly hard (till) | 26 | 125-151 | | Sand, fine to medium, well-sorted, subangular, clean, quartzose, light gray | 7 | 151-158 | | Sand, as above, mixed and interbedded with a very sandy, slightly to moderately cohesive till with fine gravel | 16 | 158-174 | | Shale, black, smooth, stiff, hard, tight, waxy, noncalcareous, fossiliferous, contains nearly white, highly calcareous soft clayey medium sand and slightly indurated sandstone lenses in lower 10' | 46 | 174-220 | Location: 133-47-16CBA Use of well: Observation Owner and number: SWC 3772 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 100 Altitude of land surface (ft., msl): 957.7 (S) Screened interval (ft.): 48-51 Lithologic log from: SWC Casing diameter: 1.25" Comments: destroyed Date completed: 8/21/69 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil, sandy clay loam with pebbles, black | . 2 | 0 - 2 | | Clay, silty to sandy with pebbles, dusky yellow
to moderately olive brown, soft to moderately
soft, cohesive, tough, oxidized (till) | 17 | 2 - 19 | | Boulder, pinkish quartzite, indurated | 3 | 19 - 22 | | <pre>Clay, sandy with pebbles, olive gray, soft, moderately cohesive (till)</pre> | 2 | 22 - 24 | | Sand, fine to medium with some coarse, moderately well-sorted in layers, subangular to subrounded, mostly granitic derivatives and limestone | 12 | 24 - 36 | | Sand, coarse to very coarse with fine and some medium gravel, also some fine to medium sand, interbedded, sorted in layers, subangular and subrounded, granitics and limestone-dolomite | 20 | 36 - 56 | | Clay, sandy with pebbles, olive gray, soft, moderately cohesive, very slightly plastic (till) | 4 | 56 - 60 | | Clay, olive gray to olive black, moderately soft, brittle, crumbly, waxy, interbedded with olive gray clayey silt | 9 | 60 - 69 | | Clay, silty to sandy with pebbles, olive gray, soft to moderately soft, moderately cohesive, interbedded with sand and gravel lenses, it is about ½ till and ½ sand and gravel | 31 | 69 -100 | Location: 133-47-16CCD Use of well: Test hole Owner and number: SWC 3776 Principal aquifer: Depth drilled (ft.): 190 Altitude of land surface (ft., msl): 962 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 8/25/69 | Unit description | Thickness (ft.) | | |--|-----------------|----------| | Topsoil, gravelly loam, black | , 1 | 0 - 1 | | Clay, silty and sandy with pebbles and cobbles, yellowish gray, dusky yellow and moderately olive brown with reddish brown iron-stains, moderately soft, cohesive, slightly to moderately plastic, oxidized (till) | 12 | 1 - 13 | | <pre>Clay, very sandy with pebbles, olive gray, soft to moderately soft, slightly cohesive to crumbly (till)</pre> | 1 | 13 - 14 | | Sand, medium to coarse, brown, well-sorted, subangular and subrounded, predominantly quartz with
limestone-dolomite and black shale | 8 | 14 - 22 | | Sand, medium to very coarse with fine gravel and
thin silt and silty clay lenses, interbedded,
gray | 13 | 22 - 35 | | Clay, silty and sandy with pebbles and cobbles, olive gray, moderately soft, cohesive (till) rough rocky drilling | 21 | 35 - 56 | | Sand, fine to medium, gray, loose, interbedded with light gray to olive gray silt and silty clay, occasional gravelly streak | 23 | 56 - 79 | | Clay, silty to very sandy with pebbles, cobbles and thin streaks of sand and fine gravel, olive gray, moderately soft, moderately cohesive, slightly plastic, drills sporadically (till) | 35 | 79 -114 | | Sand, fine, light olive gray, appears uniform but may contain clayey streaks, predominantly quartz but calcareous, generally subangular to subrounded | 21 | 114 -135 | | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Clay, dark brownish gray, smooth with occasional sand grains, slightly hard, moderately brittle, tight, calcareous (till?) | 21 | 135 -156 | | Sand, fine, light olive gray, clayey?,
drills tight | 9 | 156-165 | | Sand, fine, silty to clayey, light to medium gray, predominantly quartz, calcareous | 9 | 165-174 | | Clay, dark gray, smooth, moderately soft, cohesive, sticky, calcareous | 2 | 174-176 | | Shale, black, smooth, hard, tight, massive, fossiliferous, noncalcareous | 14 | 176-190 | Location: 133-47-16CDA Use of well: Observation Owner and number: SWC 3774 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 190 Altitude of land surface (ft., msl): 948.2 (S) Screened interval (ft.): 37-40 Lithologic log from: SWC Casing diameter: 1.25" Comments: Destroyed Date completed: 8/21/69 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil, sandy loam, dark brownish gray | · ı | 0 - 1 | | Sand, medium to coarse, yellowish reddish brown, well-sorted, subangular and subrounded, predominantly granitics and limestone-dolomite, uniform, oxidized, contains numerous thumbnail-sized clam shells | 13 | 1 - 14 | | Sand, coarse to very coarse with fine to medium gravel and occasional cobbles, mixed and interlensed, clean, subangular, mostly granitics, limestone-dolomite and indurated shale pebbles, also clam shells, medium rough drilling, taking water | 26 | 14 - 40 | | Clay, silty and sandy with pebbles and occasional cobbles, olive gray, soft to moderately soft, moderately cohesive, slightly plastic (till) contains lenses of sand and gravel | 30 | 40 - 70 | | Sand, medium to very coarse with fine gravel, interbedded, sorted in lenses, generally subangular to subrounded, granitics and limestone-dolomite mainly, drills fairly good | 21 | 70 - 91 | | Sand and fine gravel, as above, interbedded with very sandy, olive gray clayey till with pebbles and occasional cobbles, gravel caving in from above, mixed mud, samples return not too hot | 43 | 91 -134 | | Clay, silty to sandy with pebbles, olive gray, moderately soft, cohesive, tough (till), contains lenses or blocks of clay, silt, sand and fine gravel in various combinations occasional rocks, sporadic drilling | 19 | 134 -153 | | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Sand, fine, light gray (white when dry) well sorted and uniform, subangular to subrounded, predominantly quartz, calcareous | 7 | 153 -160 | | Till, as above, sandy with pebbles | 5 | 160 -165 | | Clay, silty, olive gray, moderately soft, cohesive, plastic, sticky | 4 | 165 -169 | | Shale, black, slightly hard, smooth, waxy, very tight, noncalcareous, lensed with calcareous medium-grained sand in lower portion | 21 | 169 -190 | Location: 133-47-16CDB Use of well: Observation Owner and number: SWC 3775 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 190 Altitude of land surface (ft., msl): 959.4 (S) Screened interval (ft.): 149-155 Lithologic log from: SWC Casing diameter: 1.25" Comments: destroyed Date completed: 8/22/69 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil, pebbly sandy clay loam, black | • 2 | 0 - 2 | | Clay, silty and sandy with pebbles and cobbles, yellowish gray, soft, crumbly, chunky (till) | 6 | 2 - 8 | | Clay, silty and sandy with pebbles and cobbles, moderately olive brown, soft to moderately soft, moderately cohesive, slightly to moderately plastic, oxidized (till) | 11 | 8 - 19 | | Sand, medium, light olive gray, well-sorted, subangular to subrounded, mostly quartz, indurated shale and limestone, loose, uniform | . 4 | 19 - 23 | | Clay, silty and sandy with pebbles, olive gray, moderately soft, moderately cohesive, slightly plastic (till) | | 23 - 31 | | Till, as above, interbedded with medium to coarse sand with some fine gravel | 25 | 31 - 56 | | Gravel, fine with medium, moderately well-
sorted, subangular and subrounded,
predominantly limestone-dolomite and
granitics, some indurated black shale | 4 | 56 - 60 | | Till, as above, interbedded with predominantly fine to medium sand, some coarse sand and fine gravel, occasional cobbles, till mainly soft, slightly to moderately cohesive, very sandy clay with sand grains and pebbles, smooth dark clay (60-62) | 8 . | 60 - 68 | | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Clay, silty and sandy with pebbles, moderately soft, cohesive, tight, rocky (till) | 10 | 68 - 78 | | Clay, silty and sandy with pebbles (till), olive gray, moderately soft to slightly hard, moderately cohesive to slightly crumbly, thin fine sandy lenses | 20 | 78 - 98 | | Sand, fine and medium, light olive gray, subangular and subrounded, predominantly quartz, limestone and shale, appears clean and uniform | . 7 | 98 -105 | | Clay, sandy, olive gray, moderately soft (till) | 8 | 105 -113 | | Clay, dark gray, moderately soft, smooth, tight | 2 | 113 -115 | | Till, as above, sandy clay with pebbles | 11 | 115 -126 | | Clay, as above, dark gray, smooth, waxy | 7 | 126 -133 | | Till, as above, very sandy clay with pebbles | 7 | 133 -140 | | Sand, fine with medium, light gray, well-sorted, uniform, subangular and subrounded, clean, calcareous, predominantly quartz | 27 | 140 -167 | | Till, as above, with interbedded smooth, waxy tight clay and loose, light gray, fine and medium sand | 15 | 167 -182 | | Shale, black, hard, very tight, smooth, waxy, noncalcareous | 8 | 182 -190 | Location: 133-47-17ADD Use of well: Observation Owner and number: SWC 3771 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 190 Altitude of land surface (ft., msl): 957.3 (S) Screened interval (ft.): 149-155 Lithologic log from: SWC Casing diameter: 1.25" Comments: Destroyed Date completed: 8/20/69 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil, clayey loam, black | . 2 | 0 - 2 | | Clay, silty, yellowish gray and dusky yellow, moderately soft, cohesive, moderately plastic, oxidized, laminated with light gray thin calcareous streaks | 8 | 2 - 10 | | Clay, as above, with interbedded poorly-sorted, heavily iron-stained beds of sand to fine gravel, oxidized | 9 | 10 - 19 | | Clay, silty and sandy with pebbles and occasional cobbles and sand lenses, olive gray, heterogeneous (till) | 17 | 19 - 36 | | Sand, coarse and very coarse with some fine gravel, subangular, moderately sorted, mainly quartz and limestone | 6 | 36 - 42 | | Sand and fine gravel, as above, mixed with silty to sandy clay (till?) | 14 | 42 - 56 | | Clay, dark olive gray, slightly hard, smooth, tight, waxy | 4 | 56 - 60 | | Clay, silty with sand grains and pebbles intermixed, olive gray, moderately soft, cohesive, slightly plastic (till) | 14 | 60 - 74 | | Clay and silty clay, olive gray to dark olive gray, moderately soft to slightly hard, brittle and crumbly under pressure, smooth, interbedded | 16 | 74 - 90 | | Clay, as above with interbedded friable organic
clayey sand, very fine to fine gray sand and
occasional fine gravel, thinly interbedded | 16 | 90 -106 | | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Sand, coarse and very coarse with fine gravel, subangular, moderately sorted, predominantly granitic derivatives and limestone, slightly rough drilling, no mud needed | 6 | 106-112 | | Sand and fine gravel, as above, mixed and interbedded with soft to moderately soft, slightly to moderately cohesive sandy till, samples all mixed up, drilling sporadic | 34 | 112-146 | | Sand, fine, light gray, subangular, very well-
sorted and uniform, 90%+ quartz, highly
calcareous for same reason, drills tight -
not as tight as a bedrock sand | 26 | 146-172 | | Sand, as above, clayey, tighter | 10 | 172-182 | |
Clay (shale?), very dark gray - nearly black,
slightly hard, cohesive, very stiff and
tough | 8 . | 182-190 | Location: 133-47-17CCC1 Use of well: Observation Owner and number: SWC 3960 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 320 Altitude of land surface (ft., msl): 959.22 (S) Screened interval (ft.): 118-121 Lithologic log from: SWC Casing diameter: 1.25" Comments: North well Date completed: 5/22/70 | Unit description | Thickness (ft. |) Depth (ft.) | |---|----------------|---------------| | Topsoil, silty pebbly loam, black | 2 | 0 - 2 | | Clay, yellow, soft, cohesive, plastic | 2 | 2 - 4 | | Silt, clayey, yellowish gray, sand grains and pebbles (washed till), soft, moderately cohesive, oxidized | 6 | 4 - 10 | | <pre>Clay, reddish brown, soft to moderately soft, cohesive, moderately plastic, tight, oxidized</pre> | 7 | 10 - 17 | | Clay, silty to sandy with pebbles, olive gray, moderately soft, cohesive, slightly plastic to slightly brittle, tight (till), interbedded with sand and gravel stringers | 17 | 17 - 34 | | Sand, very fine, clayey and silty, variegated grays
to brownish black, soft, slightly cohesive,
nonplastic, organic material included,
oily | 19 | 34 - 53 | | Clay, very sandy, olive gray, moderately soft
to slightly hard, cohesive, tightly
compacted, occasional pebbles (till) | 12 | 53 - 65 | | Sand, very fine to fine, silty, gray, loose, well-sorted, generally subrounded, predominantly quartz with shale and some carbonates | 15 | 65 - 80 | | Sand, fine to medium, well-sorted, subangular to subrounded, clean, predominantly quartz and granitic derivatives with some shale and carbonates; taking water, mixed 1 bag of mud. | 44 | 80 ~124 | | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Sand, medium to coarse, well-sorted in layers, contains very coarse sand and some gravel, also some fine sand, subangular to subrounded, mostly granitics with shale and carbonates; drills good, taking water, mixed another bag of mud | 186 | 124-310 | | Cobbles and boulders, mostly granitics, very rough drilling | 5 | 310-315 | | Silt and very fine sand, clayey, brownish black, soft to moderately soft, micaceous, noncalcareous, oily; tight drilling | 5 | 315-320 | Location: 133-47-17CCC2 Use of well: Observation Owner and number: SWC 9102 Principal aquifer: Undefined Depth drilled (ft.): 60 Altitude of land surface (ft., msl): 958.98 (S) Screened interval (ft.): 48-51 Lithologic log from: SWC Casing diameter: 1.25" Comments: South well Date completed: 9/12/74 | Unit description | Thickness (ft.) | Depth (ft. | |--|-----------------|------------| | <pre>Clay, silty, sandy, pebbly; dark yellowish- brown, iron-stained, soft, plastic; sand and gravel lenses; oxidized (till)</pre> | 16 | 0 - 16 | | Clay, silty, very sandy, pebbly, dark-gray;
dense, moderately plastic, sand and
gravel lenses (till), occasional grayish-
green silt lens | 44 | 16 - 60 | Location: 133-47-17DDD Use of well: Observation Owner and number: SWC 2313 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 105 Altitude of land surface (ft., msl): 964 (T) Screened interval (ft.): 60-80 Lithologic log from: SWC Casing diameter: 1.25" Comments: destroyed Date completed: 9/16/64 | Unit description | Thickness (| ft.) Depth (ft.) | |---|---|------------------| | Topsoil, black | | 0 - 1 | | Till, dusky yellowish brown, grayish ora
light brown. It is mostly grayish
shale, quartz, limestone-dolomite,
highly calcareous, oxidized, angula
subrounded, grain size varies great | orange, gypsum(?), ar to | 1 - 15 | | Till, dark greenish-gray to olive gray, with pockets of white fine sand, sh quartz, dolomite-limestone, grains 1 mm, angular to rounded, unoxidize | male,
about | 15 - 18 | | Sand, unoxidized, well sorted, subangula subrounded, quartz, shale, dolomite limestone, igneous, pyrite gypsum, seams with high concentration of sh predominant grain size slightly less 1 mm | ale, | 18 - 30 | | Sand, well sorted, predominantly grain angular to subrounded, quartz, shallimestone, lignite, igneous crystal gypsum, grades into a less well so with an average grain size of 1 mm between 1/2 to 2 mm, angular to we same composition as shore sand | le, dolomite,
llines,
rted sand,
ranging | 30 - 60 | | Clay, dark greenish gray, soft, cohesive calcareous | e, highly 2 | 60 - 62 | | Sand, well sorted (better than above) posize 1 mm, dolomite, limestone, quigneous crystallines, gypsum, lign angular to rounded, pyrite present | artz, shale,
ite, | 62 - 82 | | Gravel, fairly poorly sorted, average s angular to rounded, composition as | | 82 - 86 | | Till, olive gray with shade of dark gre
highly calcareous, cohesive, hard,
dolomite, limestone, lignite, igne
crystalline, predominant size 1/2
angular to subrounded | quartz,
ous | 86 -105 | | MW. J | | | Location: 133-47-18ABC Use of well: Industrial Owner and number: Froedert Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 245 Altitude of land surface (ft., msl): 958 (T) Screened interval (ft.): 145-235 Lithologic log from: Layne Casing diameter: 12" Comments: Date completed: 5/10/76 | Unit description | Thickness (ft.) | Depth (ft.) | |---------------------|-----------------|-------------| | Topsoil | 3 | 0 - 3 | | Blue clay (silty) | 57 | 3 - 60 | | Fine blue sand | 2 | 60 - 62 | | Blue clay | 23 | 62 - 85 | | Brown sand (fine) | 27 | 85 -112 | | Sand and boulders | 2 | 112 -114 | | Medium sand | 26 | 114 -140 | | Medium coarse sand | 65 | 140 -205 | | Fine gravel, sand | 30 | 205 -235 | | Medium sand | 8 | 235 -243 | | Weathered limestone | 2 | 243 -245 | Location: 133-47-18ADA Use of well: Observation Owner and number: SWC 3786 Principal aquifer: Wahpeton Buried valley Depth drilled (ft.): 240 Altitude of land surface (ft., msl): 960.12 (S) Screened interval (ft.): 219-225 Lithologic log from: SWC Casing diameter: 1.25" Comments: Date completed: 9/3/69 | | | 7 | |--|-----------|-------------------| | Unit description | Thickness | (ft.) Depth (ft.) | | Topsoil, sandy clay loam, black | 1.5 | 0 - 1.5 | | Clay, silty and sandy with pebbles, soft,
non- to slightly cohesive, yellowish
gray, fractured and jointed, oxidized (till) | 2.5 | 1.5- 4 | | Clay, silty to sandy with pebbles, moderately olive brown, soft to moderately soft, cohesive, moderately plastic, oxidized (till) | 13 | 4 - 17 | | Clay, silty to sandy with pebbles, olive gray, moderately soft, cohesive, moderately to slightly plastic (till) | 5 | 17 - 22 | | Sand, medium, well-sorted, subrounded, gray, clean | 3 | 22 - 25 | | Clay, silty and sandy with pebbles, olive gray, moderately soft, cohesive, moderately plastic (till) | 12 | 25 - 37 | | Silt, clayey, greenish gray to light olive gray, soft, slightly cohesive, nonplastic, slightly sticky | 10 | 37 - 47 | | Clay, dark gray, smooth, soft, cohesive, plastic, sticky | 2 | 47 - 49 | | Sand, medium to coarse, moderately well-sorted and uniform, generally subrounded, clean, nice, predominantly quartz with limestone-dolomite, some shale, etc. | 15 | 49 - 64 | | Clay, generally dark brownish gray, slightly hard, slightly brittle to slightly plastic, cohesive, smooth, tight, interbedded with lighter soft silty clay, laminated, calcareous, organic | 23 | 64 - 87 | | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Silt and very fine sand, clayey, light olive
gray, soft, slightly to moderately cohesive,
non- to slightly plastic, soft, interbedded,
easy drilling, drills like sand, calcareous | 27 | 87 -114 | | Sand, fine and medium, moderately sorted,
subangular and subrounded, no clay,
clean, loose | 16 | 114 -130 | | Clay and silt, interbedded, variegated medium to dark grays with brownish stains, moderately soft to slightly hard, cohesive, slightly brittle to moderately plastic, smooth, tight, calcareous | 11 | 130 -141 | | Silt and very fine sand, slightly clayey, light olive gray, soft, very slightly cohesive, highly calcareous, predominantly quartz, sugary | 14 | 141 -155 | | Sand, fine to medium, tannish gray, generally well-sorted and uniform except for clay streak at 165', predominantly quartz with limestone-dolomite, drills easy taking water | 43 | 155 -198 | | Sand, medium and coarse, well-sorted and uniform,
subangular to subrounded, clean, very nice;
easy drilling, taking water | 36 | 198 -234 | | Gravel, coarse, rough drilling | 3 | 234 -237 | | Sandstone, dark gray, indurated with CaCO ₃ cement, highly calcareous | 3 | 237 -240 | Location: 133-47-18BBB Use of well: Test hole Owner and number: SWC 3956 Principal aquifer: Depth drilled (ft.): 236 Altitude of land surface (ft., msl): 955
(T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: | Unit description | Thickness (ft.) | Depth (ft.) | |---|---|-------------| | Topsoil, pebbly silt loam, black | ĭ | 0 - 1 | | Silt, clayey with pebbles, yellowish of crumbly, oxidized (till) | gray, soft, 2 | 1 - 3 | | Clay, silty with sand grains and pebbl
dusky yellowish brown, soft, cohe
moderately plastic, oxidized (til | esive, | 3 - 16 | | Sand, medium and coarse, light grayish moderately well-sorted, subangula subrounded, predominantly quartz granitics with some carbonates an shale, few lignite flakes, slight iron-stained or oxidized, taking water, loose | ar and
and
nd | 16 - 38 | | Clay, greenish gray to dark greenish moderately soft to slightly hard, tight, slightly crumbly | | 38 - 42 | | Sand, medium to very coarse with fine gray, moderately well-sorted, gen subrounded, @ 35% shale, 35% gran and 30% carbonates, very little I taking quite a bit of water, clean | nerally
nitics,
Lignite, etc., | 42 - 58 | | Clay, dark gray, slightly hard, tight, | smooth 2 | 58 - 60 | | Silt, clayey and sandy, occasional coargains and pebbles but generally and sorted in lenses, usually soft moderately soft and slightly to make the cohesive or crumbly, light olive olive gray but sometimes greenish gray or nearly black occasional temporary streaks, no gravely | uniform It to moderately gray to n, light tight, | 60 -146 | | good drilling | | | | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Sand, very fine, light olive gray, silty, fairly uniform, quartzose | 8 | 146 -154 | | Silt, olive gray, soft, crumbly | 2 | 154 -156 | | Sand, fine to medium, well-sorted, uniform, clean, subrounded, quartzose and granitics | 12 | 156 -168 | | Clay, very silty, olive gray, soft, slightly cohesive, slightly plastic | 15 | 168 -183 | | Shale, black, hard, smooth, very tight, noncalcareous | 21 | 183 -204 | | Sand, very fine, silty to slightly clayey, light
gray to slightly greenish, soft, slightly
cohesive, noncalcareous, micaceous,
shale stringers at 215' | 21 | 204 -225 | | Shale, black, hard, tight, noncalcareous | 10 | 225 -235 | | Sandstone, very fine grained, indurated, dark gray | 1 | 235 -236 | Location: 133-47-19DAA Use of well: Observation Owner and number: SWC 3784 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 240 Altitude of land surface (ft., msl): 960.2 (S) Screened interval (ft.): 46-49 Lithologic log from: SWC Casing diameter: 1.25" Comments: destroyed Date completed: 8/29/69 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil, sandy clay loam, black | 2 | 0 - 2 | | Clay, sandy, yellowish gray to dusky yellow, occasional pebble and cobble (washed till?), soft, non- to slightly cohesive, jointed (?) | 4 | 2 - 6 | | Sand, medium to coarse, interbedded but well-sorted, subangular and subrounded, clean, predominantly granitics and limestone-dolomite with some shall occasional lignite fragment, loose, taking wate iron-stained and oxidized to approximately 10 or 11 feet | e, | 6 - 51 | | Gravel, fine and medium, subrounded, clean, mostly limestone-dolomite with granitics and shale, taking water | 9 | 51 - 60 | | Clay, silty and sandy with pebbles and cobbles, olive gray to dark olive gray, moderately soft and cohesive to slightly hard and slightly brittle, tight, interbedded with lenses or blocks or boulders of tight, crumbly brownish black, smooth, waxy, clay; soft, light olive gray, highly calcareous silt with brown organic stains, and clayey to silty very fine and fine sand, occasional large rock (till) | | 60 -120 | | Rocks, granitics and limestone, put on rock bit to get through, rough drilling | 4 | 120 -124 | | Clay and very fine to fine sand, light olive gray, contains pebbles, cobbles and boulders, slightly hard, brittle to crumbly (under pressure) tightly compacted (till), toss-up whether it's clayey sand or sandy clay, it's highly calcareous and appears to have some degree of permeability | 79 . | 124 -199 | #### Lithologic Log #### Unit description Thickness (ft.) Depth (ft.) Shale, brownish black, hard, tight, noncalcareous interbedded with silt, brownish black, soft, slightly calcareous; sand, dark brownish green, clayey, calcareous, carbonaceous, sandstone (219 to 223), dark gray, indurated, CaCO₃ cement, highly calcareous; also shell fragments and pyrite crystals turned drilling mud brown (Cretaceous shale) 41 199 -240 Location: 133-47-20AACCA Use of well: Test hole Owner and number: SWC 11649 Principal aquifer: Depth drilled (ft.): 280 Altitude of land surface (ft., msl): 969 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 9/4/85 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, sandy, silty, yellow brown, oxidized (till) | 12 | 1 - 13 | | Clay, sandy, silty, gray (till) | 16 | 13 - 29 | | <pre>Clay, silty, gray (squeezing off), plastic, soft, no sand particles</pre> | 12 | 29 - 41 | | Sand, fine to coarse, poorly sorted, angular to subrounded | 5 | 41 - 46 | | Clay, very silty, few returns | 15 | 46 - 61 | | Clay, very silty, gray, layered, occasional small sand grains (lacustrine) | 10 | 61 - 71 | | <pre>Clay, silty, brown-gray, no sand, color turing to light gray (lacustrine)</pre> | 18 | 71 - 89 | | Clay, silty, sandy, dark gray, drills harder (till) | 21 | 89 -110 | | Sand, fine to medium, dirty, getting coarser with depth | 98 | 110 -208 | | Sand, fine to coarse, with gravel | 28 | 208 -236 | | Sand, coarse, lots of gravel | 44 | 236 -280 | Location: 133-47-20AACCB1 Use of well: Piezometer Owner and number: SWC 11650 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 280 Altitude of land surface (ft., msl): 970.35 (S) Screened interval (ft.): 268-273 Lithologic log from: SWC Casing diameter: 1.25" Comments: East well Date completed: 9/4/85 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil | 1 . | 0 - 1 | | Clay, sandy, silty, yellow-brown, oxidized (till) | 15 | 1 - 16 | | Clay, sandy, silty, gray (till) | 20 | 16 - 36 | | Clay, silty, gray (lacustrine) | 6 | 36 - 42 | | Sand, fine to coarse, silty | 1 | 42 - 43 | | Clay, silty, gray (lacustrine) | 18 | 43 - 61 | | Clay, sandy, silty with some pebbles, gray, stiff (till) | 8 | 61 - 69 | | Clay, silty, soft, gray (lacustrine) | 21 | 69 - 90 | | Clay, sandy, silty, gray (till) | 19 | 90 -109 | | Sand, fine to coarse, dirty | 16 | 109 -125 | | Clay, silty | 1 | 125 -126 | | Sand, fine to coarse, becoming coarser with depth | 35 | 126 -161 | | Sand, medium to coarse, some gravel | 47 | 161 -208 | | Sand, coarse with gravel | 28 | 208 -236 | | Sand and gravel | 44 | 236 -280 | Location: 133-47-20AACCB₂ Use of well: Piezometer Owner and number: SWC 11651 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 120 Altitude of land surface (ft., msl): 970.40 (S) Screened interval (ft.): 113-118 Lithologic log from: SWC Casing diameter: 1.25" Comments: Middle well Date completed: 9/4/85 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, sandy, silty, yellow oxidized (till) | 19 | 1 - 20 | | Clay, sandy, silty, gray | 18 | 20 - 38 | | Clay | 18 | 38 - 56 | | Clay, silty, varying softness, varying grays (lacustrine) | 31 | 56 - 87 | | Clay, sandy, silty, gray, stiff (till) | 22 | 87 -109 | | Sand, fine to coarse, dirty | 11 | 109 -120 | Location: 133-47-20AACCB3 Use of well: Piezometer Owner and number: SWC 11652 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 60 Altitude of land surface (ft., msl): 970.14 (S) Screened interval (ft.): 42-57 Lithologic log from: SWC Casing diameter: 2.00" Comments: West well Date completed: 9/5/85 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, sandy, silty, yellow brown, oxidized (till) | 14 | 1 - 15 | | Clay, sandy, silty, gray (till) | 7 | 15 - 22 | | Clay, silty, slightly plastic, soft (lacustrine) | 14 | 22 - 36 | | Sand, fine to medium, dirty | 1 | 36 - 37 | | Clay, silty, slightly plastic, stiff | 5 | 37 - 42 | | Sand, fine to coarse, dirty | 4 | 42 - 46 | | Clay, silty (lacustrine) | 1 | 46 - 47 | | Sand, fine to coarse, dirty | 1 | 47 - 48 | | Clay, silty, stiff (lacustrine) | 6 | 48 - 54 | | Sand, fine to coarse, dirty | 1 | 54 - 55 | | Clay, gray, silty, stiff | 5 | 55 - 60 | Location: 133-47-20AAD1 Use of well: Piezometer Owner and number: SWC 11653 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 210 Altitude of land surface (ft., msl): 969.02 (S) Screened interval (ft.): 195-200 Lithologic log from:
SWC r Casing diameter: 1.25" Comments: East well Date completed: 9/5/85 | Unit description | Thickness (ft | .) Depth (ft.) | |---|---------------|----------------| | Topsoi1 | 1 | 0 - 1 | | Clay, sandy, silty, yellow-brown, oxidized (till) | 16 | 1 - 17 | | Clay, sandy, silty, gray (till) | 6 | 17 - 23 | | Clay, very silty, gray, little plasticity, no sand | 8 | 23 - 31 | | Sand, fine to medium, moderately sorted, fairly clean | 15 | 31 - 46 | | Sand, fine to coarse, predominantly medium clean, lignitic in places | 20 | 46 - 66 | | Gravel layer | 1 | 66 - 67 | | Clay, sandy, stiff, dark gray, only occasional sand grains up to pebble sized, plastic (till) | 49 | 67 -116 | | Clay, very silty, gray, moderately plastic (lacustrine) | 5 | 116 -121 | | Sand, fine to coarse, dirty, poorly sorted, occasional silt layers | 63 | 121 -184 | | Sand, medium to coarse with some gravel | 17 | 184 -201 | | Clay, sandy, silty, dark gray, some pebbles, stiff, plastic (till) | 9 | 201 -210 | Location: 133-47-20AAD₂ Use of well: Piezometer Owner and number: SWC 11654 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 135 Altitude of land surface (ft., msl): 969.28 (S Screened interval (ft.): 129-134 Lithologic log from: SWC Casing diameter: 1.25" Comments: Middle well Date completed: 9/5/85 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, sandy, yellow (till) | 15 | 1 - 16 | | Clay, sandy, gray (till) | 7 | 16 - 23 | | Clay, silty, some sand?, plastic (lacustrine) | 8 | 23 - 31 | | Sand, fine to medium, clean | 15 | 31 - 46 | | Sand, medium to coarse, clean, 1 foot gravel at base | 20 | 46 - 66 | | Clay, dark gray, sand sized particles | 54 | 66 -120 | | Sand, fine to coarse, dirty, poorly sorted | 15 | 120 -135 | Location: 133-47-20AAD3 Use of well: Piezometer Owner and number: SWC 11655 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 60 Altitude of land surface (ft., msl): 969.44 (S) Screened interval (ft.): 54-59 Lithologic log from: SWC (Right Casing diameter: 2.00" Comments: West well Date completed: 9/5/85 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil | . 1 | 0 - 1 | | Clay, sandy, silty, yellow-brown, oxidized (till) | 15 | 1 - 16 | | Clay, sandy, silty, gray (till) | 17 | 16 - 33 | | Sand, fine to medium, clean | 27 | 33 - 60 | Location: 133-47-20ABAC1 Use of well: Piezometer Owner and number: SWC 11749 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 271 Altitude of land surface (ft., msl): 974.01 (S) Screened interval (ft.): 265-270 Lithologic log from: SWC Casing diameter: 1.25" Comments: North well Date completed: 3/11/86 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, rocky (levee material) | 7 | 1 - 8 | | Clay, yellow brown, sandy, silty with gravel (oxidized till) | 28 | 8 - 36 | | Sand, fine to coarse with some gravel, angular to subrounded, poorly sorted | 3 | 36 - 39 | | Clay, silty, light gray (lacustrine) | 5 | 39 - 44 | | Sand, fine to coarse, dirty | 2 | 44 - 46 | | Clay, gray, sandy, silty (till) | 2 | 46 - 48 | | Rock | 1 | 48 - 49 | | Clay, dark gray, firm, silty, occasional small pebbles (till?) | 7 | 49 - 56 | | Clay, light greenish gray, silty (lacustrine) | 10 | 56 - 66 | | Clay, dark gray, stiff, silty, sandy (till) | 5 | 66 - 71 | | Clay, lighter gray, softer, some silt (lacustrine) | 10 | 71 - 81 | | Clay, dark gray, firm, silty (till?) | 20 | 81 -101 | | Sand, fine to medium, dirty | 3 | 101 -104 | | Clay | 1 | 104 -105 | | Sand, fine to medium, dirty, poorly sorted | 18 | 105 -123 | | Sand, medium to coarse, fairly well sorted | 63 | 123 -196 | | Unit description | Thickness (ft.) | Depth (ft.) | |-------------------------------------|-----------------|-------------| | Sand, coarse to medium, some gravel | 9 | 196 -205 | | Sand, coarse with gravel | 26 | 205 -231 | | Sand and gravel, with some lignite | 33 | 231 -264 | | Gravel, medium to coarse | 5 | 264 -269 | | Gravel and rocks | 2 | 269 -271 | Location: 133-47-20ABAC2 Use of well: Piezometer Owner and number: SWC 11750 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 125 Altitude of land surface (ft., msl): 974.06 (S) Screened interval (ft.): 118-123 Lithologic log from: SWC Casing diameter: 1.25" Comments: Middle well Date completed: 3/12/86 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Fill material | 8 | 0 - 8 | | Clay, sandy, silty, yellow brown (oxidized till) | 13 | 8 - 21 | | Clay, sandy, silty, gray (till) | 12 | 21 - 33 | | Sand, fine to medium, well sorted | 6 | 33 - 39 | | Clay | 4 | 39 - 43 | | Sand, fine to coarse, shale gravel | 3 | 43 - 46 | | Clay, sandy, silty (till) | 3 | 46 - 49 | | Clay, sandy, silty, green tinge, firm (till) | 7 | 49 - 56 | | Clay, silty, gray bentonitic (lacustrine) | 7 | 56 - 63 | | Clay, dark gray, firm occasional sand sized particles (lacustrine looking till) | 33 | 63 - 96 | | Sand, fine, dirty, very few returns until approximately 100' | 4 | 96 -100 | | Sand, fine, fairly well sorted | 25 | 100 -125 | Location: 133-47-20ABAC3 Use of well: Test hole Owner and number: SWC 11751 Principal aquifer: Depth drilled (ft.): 20 Altitude of land surface (ft., msl): 974 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Lost circulation Date completed: 3/12/86 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Fill material | 1 | 0 - 1 | | Clay, yellow brown sandy, silty, oxidized (till) | 19 | 1 - 20 | | Lost circulation | | | Location: 133-47-20ABAC4 Use of well: Piezometer Owner and number: SWC 11752 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 50 Altitude of land surface (ft., msl): 973.99 (S) Screened interval (ft.): 38-48 Lithologic log from: SWC Casing diameter: 2.00" Comments: South well Date completed: 3/12/86 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Fill material | 1 | 0 - 1 | | Clay, sandy, silty, yellow brown (oxidized till) | 20 | 1 - 21 | | Clay, sandy, silty, gray (till) | 8 | 21 - 29 | | Clay, gray, laminated (lacustrine) | 5 | 29 - 34 | | Sand, fine to medium | 2 | 34 - 36 | | Sand, fine to coarse with gravel | 9 | 36 - 45 | | Gravel, medium to coarse (put on rock bit) | 3 | 45 - 48 | | Clay, dark with light streaks (lacustrine) | 2 | 48 - 50 | Location: 133-47-20ABB Use of well: Observation Owner and number: SWC 3785 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 280 Altitude of land surface (ft., msl): 964.64 (S) Screened interval (ft.): 178-184 Lithologic log from: SWC Casing diameter: 1.25" Comments: Northeast well Date completed: 9/2/69 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil, sandy clay loam with rocks, black | 2 | 0 - 2 | | Clay, silty and sandy with pebbles, yellowish gray, soft, slightly cohesive, oxidized (till) | 6 | 2 - 6 | | Gravel, fine and medium, brown, oxidized, iron-stained, angular to subrounded | 2 | 6 - 8 | | <pre>Clay, as above, with much medium to coarse, iron-stained sand (till)</pre> | 5 | 8 - 13 | | Sand, medium to coarse, tan, well-sorted, generally subangular, mostly quartz and limestone and dolomite | 5 | 13 - 18 | | Silt, clayey with very fine sand in all combinations, interbedded and laminated, variegated grays to brownish black, generally soft, slightly cohesive and non- to very slightly plastic, lacustrine, occasional coarse sand grain and pebble, no shells | 30 | 18 - 48 | | Clay, very silty, light olive gray, moderately hard, brittle, very tight, calcareous, greenish tint | 9 | 48 - 57 | | Silt, light gray, calcareous, soft, slightly cohesive | 5 | 57 - 62 | | Clay, silty to sandy with occasional coarse sand grains, dark olive gray to dark brownish gray, slightly hard, brittle, very tight (till?) | 12 | 62 - 74 | | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Sand, very fine to fine, light gray, loose, calcareous, gradually getting coarser with depth, very coarse in last 20', generally well-sorted and uniform, clean, no clay, taking water, really nice | 190 | 74 -264 | | Shale, brownish black, hard, very tight, smooth, waxy, non-calcareous | 16 | 264 -280 | Location: 133-47-20ABBA1 Use of well: Piezometer Owner and number: SWC 11759 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 277 Altitude of land surface (ft., msl): 975.36 (S) Screened interval (ft.): 266-271 Lithologic log from: SWC Casing diameter: 1.25" Comments: South well Date completed: 3/25/86 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Fill material | 1 | 0 - 1 | | Clay, sandy, silty, rocky, yellow brown, stiff, plastic (oxidized till) | 9 | 1 - 10 | | Clay, sandy, silty, rocky, dark gray (fill
material) (Till) | 3 | 10 - 13 | | <pre>Clay, sandy, silty, rocky, yellow brown, stiff, plastic (oxidized till)</pre> | 8 | 13 - 21 | | Sand, fine to coarse, dirty, poorly sorted, angular to subrounded, cleaner and coarser with depth, clay lens at 39-40' | 23 | 21 - 44 | | Clay, light gray, silty with layers of sand and gravel (lacustrine) | 6 | 44 - 50 | | Gravel, medium | 1 | 50 - 51 | | Clay, silty, sandy, dark gray (till) | 10 | 51 - 61 | | Clay, silty, light gray, no plasticity, soft (lacustrine) | 7 | 61 - 68 | | Clay, silty, dark gray, stiff, some plasticity, occasional sand grains (lacustrine till?) | 31 | 68 - 99 | | Sand, fine to medium, poorly sorted, lots of fines | 41 | 99 -140 | | Sand, medium to coarse with gravel | 100 | 140 -240 | | Sand, coarse with medium to coarse gravel, gravel
and rocks from 269 to 277', probably right
on top of bedrock | 37 | 240 -277 | Location: 133-47-20ABBA2 Use of well: Piezometer Owner and number: SWC 11760 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 125 Altitude of land surface (ft., msl): 975.56 (S) Screened interval (ft.): 118-123 Lithologic log from: SWC Casing diameter: 1.25" Comments: Middle well Date completed: 3/25/86 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Fill material | 1 | 0 - 1 | | Clay, sandy, silty, stiff, plastic, yellow-
brown (oxidized till) | 9 | 1 - 10 | | <pre>Clay, sandy, silty, dark gray (probably fill material) (till)</pre> | 3 | 10 - 13 | | <pre>Clay, sandy, silty, rocky, yellow-brown, stiff, plastic (oxidized till)</pre> | 8 | 13 - 21 | | Sand, fine to coarse | 15 | 21 - 36 | | Sand, coarse with gravel, some coal and shale gravel | 7 | 36 - 43 | | Gravel, medium to coarse, subangular to subrounded | 7 | 43 - 50 | | Rock | 1 | 50 - 51 | | Clay, sandy, silty, medium gray (till) | 2 | 51 - 53 | | Rock | 1 | 53 - 54 | | Clay, sandy, silty, medium gray (till) | 5 | 54 - 59 | | Clay, silty, light gray, no plasticity, occasional bentonite layer (lacustrine) | 4 | 59 - 63 | | Sand, medium to coarse | 1 | 63 - 64 | | Clay, sandy, silty, dark gray, some light streaks, stiff, slightly plastic, rocks at 84-85', predominantly stiff, silty clay, with occasional sand and pebble sized grains | 34 | 64 - 98 | | Sand, fine to coarse, turning to medium to coarse, poorly sorted turning to moderately sorted | 27 | 98 -125 | Location: 133-47-20ABBA3 Use of well: Piezometer Owner and number: SWC 11761 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 55 Altitude of land surface (ft., msl): 976.07 (S) Screened interval (ft.): 43-53 Lithologic log from: SWC Casing diameter: 2.00" Comments: North well Date completed: 3/25/86 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Fill material | 1 | 0 - 1 | | Clay, sandy, silty, yellow-brown (gray 10-13') plastic, stiff (oxidized till) | 20 | 1 - 21 | | Sand, fine to coarse | 15 | 21 - 36 | | Sand, coarse with some gravel | 14 | 36 - 50 | | Clay, very sandy, silty, light gray (till) | 5 | 50 - 55 | Location: 133-47-20ABCA1 Use of well: Piezometer Owner and number: SWC 11756 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 80 Altitude of land surface (ft., msl): 974.66 (S) Screened interval (ft.): 50-60 Lithologic log from: SWC Casing diameter: 2.00" Comments: North well Date completed: 3/18/86 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Fill material, dark clay | 1 | 0 - 1 | | Fill material, rock | 1 . | 1 - 2 | | <pre>Clay, yellow brown, sandy, silty, stiff, plastic (oxidized till)</pre> | 14 | 2 - 16 | | Sand, fine to medium, some gravel, oxidized, subangular | 38 | 16 - 54 | | Clay, silty, soft | 9 | 54 - 63 | | Gravel, fine to medium, angular to subrounded, clean | 11 | 63 - 74 | | Clay, sandy, silty, dark gray, stiff (till) | 6 | 74 - 80 | Location: 133-47-20ABCA2 Use of well: Piezometer Owner and number: SWC 11757 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 124 Altitude of land surface (ft., msl): 974.45 (S) Screened interval (ft.): 118-122 Lithologic log from: SWC Casing diameter: 1.25" Comments: Middle well Date completed: 3/18/86 | Unit description | Thickness (ft. | Depth (ft.) | |--|----------------|-----------------| | Fill material | 1 | 0 - 1 | | <pre>Clay, sandy, silty, yellow brown, plastic,
stiff (oxidized till)</pre> | 16 | 1 - 17 | | Sand, medium to coarse with gravel, oxidized, angular to subrounded | 14 | 17 - 31 | | Sand, coarse with fine to medium gravel (lignitic 45'-53') | 25 | 31 - 56 | | Gravel, medium to coarse, rocks from 64 - 74 | 18 | 56 - 7 4 | | Clay, sandy, silty, dark gray | 28 | 74 -102 | | Sand, fine to medium | 4 | 102 -106 | | Clay, silty, soft, medium gray | 1 | 106 -107 | | Clay and sand interbedded | 3 | 107 -110 | | Rock, big tough one, put on rock bit then replaced with second rock bit, finally a third bit | 2 | 110 -112 | | Sand, medium with fine to coarse sand, dirty | 12 | 112 -124 | Location: 133-47-20ABCA3 Use of well: Piezometer Owner and number: SWC 11758 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 280 Altitude of land surface (ft., msl): 974.76 (S) Screened interval (ft.): 273-278 Lithologic log from: SWC Casing diameter: 1.25" Comments: South well Date completed: 3/24/86 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Fill material | 1 | 0 - 1 | | Clay, sandy, silty, yellow-brown, plastic, stiff (oxidized till) | 16 | 1 - 17 | | Sand, coarse, with gravel, angular to subrounded, oxidized | 14 | 17 - 31 | | Sand and gravel | 22 | 31 - 53 | | Gravel, with sand (rocks from 66-71) | 18 | 53 - 71 | | Clay, sandy, silty, dark gray, plastic | 30 | 71 -101 | | Silt, light gray, slightly cohesive | 2 | 101 -103 | | Sand, fine grained | 6 | 103 -109 | | Clay, silty (lacustrine) | 2 | 109 -111 | | Sand, medium to coarse with gravel | 56 | 111 -167 | | Sand and gravel | 113 | 167 -280 | Location: 133-47-20ABD Use of well: Municipal Owner and number: Wahpeton #2 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 300 Altitude of land surface (ft., msl): 970 (T) Screened interval (ft.): 240-300 Lithologic log from: Ervin Drillers Casing diameter: 12" Comments: City well #2 Date completed: 7/18/73 | Unit description | Thickness (ft.) | Depth (ft.) | |------------------|-----------------|-------------| | Topsoil | 2 | 0 - 2 | | Yellow clay | 17 | 2 - 19 | | Gray clay | 18 | 19 - 37 | | Sand, fine | 6 | 37 - 43 | | Gray clay (hard) | 49 | 43 - 92 | | Gray clay (soft) | 3 | 92 - 95 | | Sand (medium) | 26 | 95 -121 | | Gray clay | 3 | 121 -124 | | Sand (medium) | 176 | 124 -300 | Location: 133-47-20ABDAC1 Use of well: Industrial supply Owner and number: MDFC 8 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 302 Altitude of land surface (ft., msl): 973.54 (S) Screened interval (ft.): 175-275 Lithologic log from: LTP Casing diameter: 12" Comments: Date completed: 9/22/86 | Unit description | Thickness (| ft.) Depth (ft.) | |--------------------------------|-------------|------------------| | Topsoil | 1 | 0 - 1 | | Clay, silty, brown | 8 | 1 - 9 | | Sand, brown | 2 | 9 - 11 | | Clay, brown | 5 | 11 - 16 | | Clay, blue | 16 | 16 - 32 | | Clay, sandy, blue | 44 | 32 - 76 | | Sand, gray | 11 | 76 - 87 | | Sand and gravel | 29 | 87 - 116 | | Clay, blue | 1 | 116 - 117 | | Rock, red | 1 | 117 - 118 | | Gravel, brown | 8 | 118 - 126 | | Rock, white | 1 | 126 - 127 | | Sand, gray | 41 | 127 - 168 | | Sand, gray | 112 | 168 - 280 | | Sand with lenses of clay, gray | 4 | 280 - 284 | | Sand, gray | 18 | 284 - 302 | Location: 133-47-20ABDA₁ Use of well: Observation Owner and number: MDFC 7 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 272 Altitude of land surface (ft., msl): 971.28 (S) Screened interval (ft.): 267-272 Lithologic log from: LTP Casing diameter: 2.00" Comments: Date completed: 9/4/86 | Unit description | Thickness | (ft.) Depth (ft.) | |-------------------|-----------|-------------------| | Fill, brown | 2 | 0 - 2 | | Clay, brown | 27 | 2 - 29 | | Sand | 28 | 29 - 57 | | Clay, sandy, gray | 53 | 57 - 110 | | Sand, gray | 30 | 110 - 140 | | Sand | 60 | 140 - 200 | | Sand | 47 | 200 - 247 | | Sand | 25 | 247 - 272 | Location: 133-47-20ABDB₁ Use of well: Piezometer Owner and number: SWC 11705 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 124 Altitude of land surface (ft., msl): 972.01(S) Screened interval (ft.): 115-120 Lithologic log from: SWC Casing diameter: 1.25" Comments: North well Date completed: 10/16/85 | | Unit description | Thickness | (ft.) | Depth (ft.) | |----|--|-----------|-------|-------------| | | Fill | 4 | | 0 - 4 | | | Topsoil, black, silty | 2 | | 4 - 6 | | | <pre>Clay, yellowish orange, silty, pebbly, soft, oxidized (till)</pre> | 6 | | 6 - 12 | | | Silt, gray, slightly clayey | 3 | | 12 - 15 | | 10 | Clay, silty, sandy, pebbly, oxidized (till) | 3 | | 15 - 18 | | | Sand, medium to very coarse, predominantly very coarse, angular to rounded, predominantly subrounded, quartz and carbonates, becomes gravelly at 26', taking water | 8 | | 18 - 26 | | | Gravel, very coarse sand to gravel ½" diameter, predominantly gravel to 1/8" diameter, angular to rounded,
predominantly subrounded, taking water, predominantly quartz and carbonates, much coarser about 89' | 98 | b. | 26 -124 | Location: 133-47-20ABDB₂ Use of well: Piezometer Owner and number: SWC 11706 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 280 Altitude of land surface (ft., msl): 972.14 (S) Screened interval (ft.): 248-253 Lithologic log from: SWC Casing diameter: 1.25" Comments: Middle well Date completed: 10/21/85 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Fill | 5 | 0 - 5 | | Clay, yellowish orange, silty, pebbly, soft (till) | 13 | 5 - 18 | | Sand, medium to very coarse, predominantly very coarse, angular to rounded, predominantly subrounded, quartz, carbonates, shale, oxidized to about 30', below 26' becomes gravelly | 8 | 18 - 26 | | Gravel, very coarse to gravel ½" diameter; predominantly gravel to ½" diameter, subrounded, predominantly shale and carbonates, appears coarser below 80', real coarse at 110', rounded shale and carbonates 1½+ diameter | 95 | 26 -121 | | Clay, dark gray | 1 | 121 -122 | | Gravel, as above | 6 | 122 -128 | | Clay, no cuttings, dark gray, waxy | 2 | 128 -130 | | Sand, all suspended in mud, appears to be very coarse sand, equal proportion quartz, shale and carbonates, angular to rounded, predominantly subangular to subrounded; tremendously coarse gravel in places from 130'to 150' | 150 | 130 -280 | Location: 133-47-20ABDB3 Use of well: Piezometer Owner and number: SWC 11707 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 55 Altitude of land surface (ft., msl): 972.15 (S) Screened interval (ft.): 45-50 Lithologic log from: SWC Casing diameter: 2.00" Comments: South well Date completed: 10/22/85 | Unit description | Thickness (ft.) | Depth (ft.) | |----------------------------------|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, oxidized, yellowish (till) | 17 | 1 - 18 | | Sand, coarse | 8 | 18 - 26 | | Sand and gravel, coarse | 29 | 26 - 55 | Location: 133-47-20ABDB4 Use of well: Piezometer Owner and number: SWC 11753 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 280 Altitude of land surface (ft., msl): 975.21 (S) Screened interval (ft.): 273-278 Lithologic log from: SWC Casing diameter: 1.25" Comments: North well Date completed: 3/13/86 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Fill material | 1 | 0 - 1 | | Clay, sandy, silty, yellow brown (oxidized till) | 20 | 1 - 21 | | Sand, medium to coarse with gravel, predominantly shale gravel, coal at 45' | 24 | 21 - 45 | | Sand, coarse, with gravel, turning to gravel with sand with depth | 30 | 45 - 75 | | Clay, silty, slightly plastic | 1 | 75 - 76 | | Gravel, medium to coarse | 4 | 76 - 80 | | <pre>Clay, dark gray, stiff, occasional sand grains (lacustrine till?)</pre> | 28 | 80 -108 | | Clay, some silty, some sandy, interbedded | 9 | 108 -117 | | Sand, medium to coarse | 24 | 117 -141 | | Gravel, with sand | 139 | 141 -280 | Location: 133-47-20ABDB5 Use of well: Piezometer Owner and number: SWC 11754 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 120 Altitude of land surface (ft., msl): 975.02 (S) Screened interval (ft.): 108-113 Lithologic log from: SWC Casing diameter: 1.25" Comments: Middle well Date completed: 3/13/86 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Fill material | 1 | 0 - 1 | | Clay, sandy, silty, yellow-brown (oxidized till) | 19 | 1 - 20 | | Sand, coarse to medium with gravel | 14 | 20 - 34 | | Sand and gravel | 47 | 34 - 81 | | Clay, dark gray, stiff, occasional sand sized grains | 25 | 81 -106 | | Sand, medium to coarse (118-120' is coarse with gravel) | 14 | 106 -120 | Location: 133-47-20ABDB6 Use of well: Piezometer Owner and number: SWC 11755 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 60 Altitude of land surface (ft., msl): 975.06 (S) Screened interval (ft.): 50-55 Lithologic log from: SWC Casing diameter: 2.00" Comments: South well Date completed: 3/14/86 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Fill material | 1 | 0 - 1 | | Clay, sandy, silty, yellow-brown (oxidized till) | 19 | 1 - 20 | | Gravel, medium to coarse (oxidized) | 16 | 20 - 36 | | Gravel, coarse | 24 | 36 - 60 | Location: 133-47-20ABDB7 Use of well: Industrial supply Owner and number: MDFC 12-D Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 120 Altitude of land surface (ft., msl): 971.84 (S) Screened interval (ft.): 95-115 Lithologic log from: LTP Casing diameter: 12.0" Comments: Date completed: 8/26/86 | Unit description | Thickness (| ft.) Depth (ft.) | |-----------------------------|-------------|------------------| | Sand, Brown | 4 | 0 - 4 | | Clay and sand, brown | 3 | 4 - 7 | | Clay and sand, brown | 4 | 7 - 11 | | Clay, brown | 9 | 11 - 20 | | Sand and gravel, took water | 70 | 20 - 90 | | Sand and gravel, took water | 23 | 90 -113 | | Gravel and rock | 2 | 113 -115 | | Clay, sandy, gray | 2 | 115 -117 | | Gravel | 1 | 117 -118 | | Clay, sandy, gray | 2 | 118 -120 | Location: 133-47-20ABDBA1 Use of Use of well: Piezometer Owner and number: MDFC 10-A Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 62 Altitude of land surface (ft., msl): 972.24 (S) Screened interval (ft.): 55-60 Lithologic log from: LTP Casing diameter: 2.00" Comments: Date completed: 8/26/86 | Unit description | Thickness (ft.) | Depth (ft.) | |-----------------------------|-----------------|-------------| | Topsoil | 2 | 0 - 2 | | Clay, sandy, brown | 16 | 2 - 18 | | Sand, dirty with clay | 2 | 18 - 20 | | Sand and gravel, took water | 42 | 20 - 62 | Location: 133-47-20ABDBA₂ Use of well: Piezometer Owner and number: MDFC 10-B Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 120 Altitude of land surface (ft., msl): 972.20 (s) Screened interval (ft.): 114-119 Lithologic log from: LTP Casing diameter: 2.00" Comments: Date completed: 8/27/86 | Unit description | Thickness (ft.) | Depth (ft.) | |-----------------------------|-----------------|-------------| | Topsoil | 2 | 0 - 2 | | Clay, sandy, brown | 20 | 2 - 22 | | Sand and gravel, took water | 97 | 22 -119 | | Clay, sandy, dark gray | 1 | 119 -120 | Location: 133-47-20ABDBA3 Use of well: Piezometer Owner and number: MDFC 10-C Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 120.5 Altitude of land surface (ft., msl): 971.70 (S) Screened interval (ft.): 115-120 Lithologic log from: LTP Casing diameter: 2.00" Comments: Date completed: 8/29/86 | Unit description | Thickness (f | t.) Depth (ft.) | |--------------------------------|--------------|-----------------| | Topsoil | 1 | 0 - 1 | | Clay, sandy, brown | 18 | 1 - 19 | | Sand and gravel, brown | 88 | 19 - 107 | | Gravel, very coarse | 13 | 107 - 120 | | Clay, sandy with cobbles, blue | 0.5 | 120 - 120.5 | Location: 133-47-20 ABDBD1 Use of well: Piezometer Owner and number: MDFC 9-A Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 122 Altitude of land surface (ft., msl): 972/26 (S) Screened interval (ft.): 114-119 Lithologic log from: LTP Casing diameter: 2.00" Comments: Date completed: 8/28/86 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Sand and fill, brown | 2 | 0 - 2 | | Clay, brown | 16 | 2 - 18 | | Sand, brown | 4 | 18 - 22 | | Clay, gray | 2 | 22 - 24 | | Sand and gravel | 28 | 24 - 52 | | Sand, fine and dirty | , 6 | 52 - 58 | | Clay, sandy, gray | 2 | 58 - 60 | | Sand and clay lenses, gray | 1.5 | 60 - 61.5 | | Sand and gravel | 23.5 | 61.5 -85 | | Clay, sandy, gray | 2 | 85 - 87 | | Sand and gravel drilled good | 13 | 87 - 100 | | Sand and gravel and rock, drilled poor | 13 | 100 - 113 | | Rock, white | 1 | 113 - 114 | | Gravel and rock | 8 | 114 - 122 | Location: 133-47-20ABDBD₂ Use of well: Piezometer Owner and number: MDFC 9-B Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 60 Altitude of land surface (ft., msl): 972.14 (S) Screened interval (ft.): 53-58 Lithologic log from: LTP Casing diameter: 2.00" Comments: Date completed: 8/29/86 | Unit description | Thickness (f | t.) Depth (ft.) | |-----------------------|--------------|-----------------| | Sand and fill, brown | 2 | 0 - 2 | | Clay, brown | 16 | 2 - 18 | | Sand, brown | 4 | 18 - 22 | | Sand and gravel, gray | 2 | 22 - 24 | | Sand | 34 | 24 - 58 | | Clay, gray | 2 | 58 - 60 | Location: 133-47-20ABDC1 Use of well: Piezometer Owner and number: SWC 11698 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 286 Altitude of land surface (ft., msl): 983.28 (S) Screened interval (ft.): 278-283 Lithologic log from: SWC . Casing diameter: 1.25" Comments: North well Date completed: 10/10/85 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Fill, levee material, clay and rocks | 12 | 0 - 12 | | Clay, sandy, silty, yellow-brown, oxidized (till) | 16 | 12 - 28 | | Clay, sandy, silty, gray (till) | 1 | 28 - 29 | | Sand, medium to coarse, fairly clean with some fine material | 11 | 29 - 40 | | <pre>Silt, clayey, gray, slightly plastic, not many returns (lacustrine)</pre> | 5 | 40 - 45 | | Sand, medium, fairly well sorted, clean, some lignite | 9 | 45 - 54 | | Silt, very few returns (lacustrine) | 3 | 54 - 57 | | Sand, medium to fine | 20 | 57 - 77 | | <pre>Clay, gray, stiff, silty, no sand, slightly
plastic,</pre> | 6 | 77 - 83 | | Silt, very fine, clayey, gray (lacustrine) | 6 | 83 - 89 | | <pre>Clay, dark gray, very stiff, occasional small pebbles (till?, fluvial?)</pre> | 20 | 89 - 109 | | Clay, sandy, silty, gray (till) | 6 | 109 - 115 | | Sand, fine, poorly sorted | 7 | 115 - 122 | | Clay, sandy, silty | 5 | 122 - 127 | | Sand, medium to coarse, becoming coarser with depth | 35 | 127 - 162 | | Gravel, fine to medium with sand, less sand, more gravel with depth; 2 bags of bentonite at 240'- 260' | 124 | 162 - 286 | Location: 133-47-20ABDC2 Use of well: Piezometer Owner and number: SWC 11699 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 135 Altitude of land surface (ft., msl): 983.40 (S) Screened interval (ft.): 128-133 Lithologic log from: SWC Casing diameter: 1.25" Comments: Middle well Date completed: 10/10/85 | Unit description | Thickness (ft. |) Depth (ft.) | |---|----------------|---------------| | Fill material (levee) | 11 | 0 - 11 | | Clay, sandy, silty, yellow-brown, oxidized (till) | 15 | 11 - 26 | | Sand, medium, lignitic, oxidized | 1 | 26 - 27 | | Clay, sandy, silty, yellow (till) | 2 | 27 - 29 | | Clay, sandy, silty, gray (till) | 17 | 29 - 46 | | Clay, light gray, very soft, very plastic | 10 | 46 - 56 | | Sand, medium to coarse | 17 | 56 - 73 | | Rock and gravel | 2 | 73 - 75 | | Clay, dark gray, silty, occasional sand sized particles (looks lacustrine with some pebbles) becomes more plastic with depth (till) | 38 | 75 -113 | | Sand, fine, not much return | 5 | 113 -118 | | Silt, slightly plastic | 2 | 118 -120 | | Sand, fine, very little return | 3 | 120 -123 | | Silt, very little return | 4 | 123 -127 | | Sand, fine, medium to coarse | 8 | 127 -135 | Location: 133-47-20ABDC3 Use of well: Piezometer Owner and number: SWC 11700 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 75 Altitude of land surface (ft., msl): 983.26 (S) Screened interval (ft.): 67-72 Lithologic log from: SWC Casing diameter: 2.00" Comments: South well Date completed: 10/11/85 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Fill material | 12 | 0 - 12 | | Clay, sandy, silty, yellow brown, oxidized (till) | 17 | 12 - 29 | | Sand, medium, oxidized | 2 | 29 - 31 | | Clay, sandy, silty, yellow brown (till) | 6 | 31 - 37 | | Sand, medium to coarse, some fine sand, moderately to poorly sorted | 35 | 37 - 72 | | Clay, gray, stiff, silty, no sand (lacustrine) | 3 | 72 - 75 | Location: 133-47-20ABDDAB Use of well: Piezometer Owner and number: MDFC 6 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 272 Altitude of land surface (ft., msl): 971.16 (S) Screened interval (ft.): 265-270 Lithologic log from: LTP Casing diameter: 2.00" Comments: Date completed: 9/9/86 | Unit description | Thickness (ft. |) Depth (ft.) | |----------------------------|----------------|---------------| | Fill, brown | 2 | 0 - 2 | | Clay, brown | 15 | 2 - 17 | | Clay, blue | 11 | 17 - 28 | | Sand, fine with coal, gray | 56 | 28 - 84 | | Clay, sandy, gray | 5 | 84 - 89 | | Sand | 16 | 89 - 105 | | Sand and gravel | 7 | 105 - 112 | | Clay, sandy, gray | 15 | 112 - 127 | | Sand | 50 | 127 - 177 | | Sand | 95 | 177 - 272 | Location: 133-47-20ABDDA₂ Use of well: Observation Owner and number: SWC CST Principal aquifer: None Depth drilled (ft.): 12 Altitude of land surface (ft., msl): 970.24 (S) Screened interval (ft.): 9-12 Lithologic log from: SWC Casing diameter: 1.25" Comments: Installed using a backhoe Date completed: 8/22/85 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Clay, rocky, sandy, silty (till and fill) | 9 | 0 - 9 | | Sand, interspersed with other material (sand bed for pipeline) | 2 | 9 - 11 | Location: 133-47-20ABDDA₃ Use of well: Piezometer Owner and number: SWC 11645 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 280 Altitude of land surface (ft., msl): 970.01 (S) Screened interval (ft.): 268-273 Lithologic log from: SWC Casing diameter: 1.25" Comments: Southwest well Date completed: 8/27/85 | Unit description | Thickness | (ft.) Depth (ft.) | |--|-----------|-------------------| | Topsoil | 1 | 0 - 1 | | Clay, sandy, silty, yellow-brown, oxidized (till) | 12 | 1 - 13 | | Clay, gray, sandy, silty (till) | 19 | 13 - 32 | | Sand, fine to coarse, poorly sorted, angular to subrounded, lignitic | 12 | 32 - 44 | | Silt, clayey, gray, few returns | 3 | 44 - 47 | | <pre>Clay, silty, sandy, gray, a few small pebbles, stiff, but fairly easy drilling (lacustrine?) (till?)</pre> | 14 | 47 - 61 | | Clay, very silty, gray, a few small sand grains (lacustrine clay) | 15 | 61 - 76 | | Silt and clay, interbedded, silty clays, clayey silts (lacustrine) | 6 | 76 - 82 | | Clay, gray, silty, a little stiffer (lacustrine) | 4 | 82 - 86 | | <pre>Clay, dark gray, silty, sandy, very stiff, looks a little like lacustrine clay, a little like till; has gravel sized material in it (till?)</pre> | 24 | 86 -110 | | Sand, fine to coarse with gravel and silt, very dirty, very poorly sorted, angular to subrounded | 42 | 110 -152 | | Sand, medium to coarse, some gravel, angular to subrounded | 32 | 152 -184 | | Sand, coarse with medium gravel | 96 | 184 -280 | Location: 133-47-20ABDDA₄ Use of well: Piezometer Owner and number: SWC 11646 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 190 Altitude of land surface (ft., msl): 970.25 (S) Screened interval (ft.): 178-183 Lithologic log from: SWC Casing diameter: 1.25" Comments: Northwest well Date completed: 8/29/85 | Unit description | Thickness (| ft.) Depth (ft.) | |---|-------------|------------------| | Topsoil | 1 | 0 - 1 | | Clay, sandy, silty, yellow brown, oxidized (till) | 14 | 1 - 15 | | Clay, gray, sandy, silty, plastic (till) | 11 | 15 - 26 | | Silt, clayey, somewhat plastic | 6 | 26 - 32 | | Sand, fine to coarse, poorly sorted, lignitic | 14 | 32 - 46 | | Gravel, medium, particles angular to subrounded | 3 | 46 - 49 | | Clay, sandy, silty, fairly stiff, somewhat plastic (till) | 12 | 49 - 61 | | <pre>Clay, very silty, gray, occasional small sand grains (lacustrine clay)</pre> | 26 | 61 - 87 | | Clay, dark gray, stiff, silty, occasional sand grains (till?) | 22 | 87 -109 | | Sand, fine to coarse, dirty, poorly sorted silty clay lenses at 112-113 and 116-117 | 23 | 109 -132 | | Sand, medium to coarse, some gravel, dirty, poorly sorted | 58 | 132 -190 | Location: 133-47-20ABDDA₅ Use of well: Piezometer Owner and number: SWC 11647 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 120 Altitude of land surface (ft., msl): 969.90 (S) Screened interval (ft.): 113-118 Lithologic log from: SWC Casing diameter: 1.25" Comments: Southeast well Date completed: 8/29/85 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, sandy, silty, yellow-brown, oxidized (till) | 12 | 1 - 13 | | Clay, sandy, silty, gray, plastic (till) | 10 | 13 - 23 | | Sand, fine to coarse, poorly sorted, predominantly fine | 20 | 23 - 43 | | Sand, clayey with some gravel | 6 | 43 - 49 | | Clay, silty, sandy, stiff (till) | 18 | 49 - 67 | | Clay, silty, sandy (lacustrine) | 20 | 67 - 87 | | Clay, sandy, silty, dark gray | 23 | 87 -110 | | Sand, fine to medium, dirty, poorly sorted | 10 | 110 -120 | Location: 133-47-20ABDDA₆ Use of well: Piezometer Owner and number: SWC 11648 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 47 Altitude of land surface (ft., msl): 969.93 (S) Screened interval (ft.): 36-41 Lithologic log from: SWC Casing diameter: 2.00" Comments: Northeast well Date completed: 8/30/85 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, sandy, silty, yellow-brown, plastic (gravel at 11-13) (till) | 12 | 1 - 13 | | Clay, sandy, silty, gray, plastic (till) | 19 | 13 - 32 | | Sand, fine to coarse, with lignite, predominantly fine grained | 12 | 32 - 44 | | Clay, silty, gray | 3 | 44 - 47 | Location: 133-47-20ABDDA7 Use of well: Observation Owner and number: SWC 11656 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 280 Altitude of land surface (ft., msl): 970.00 (S) Screened interval (ft.): 269-274 Lithologic log from: SWC Casing diameter: 1.25" Comments: East well Date completed: 9/6/85 | Unit description | Thickness | (ft.) Depth (ft.) | |---|-----------|-------------------| | Topsoil | 1 | 0 - 1 | | Clay, sandy, silty, yellow-brown (till) | 12 | 1 - 13 | | Clay, sandy, silty, gray (till) | 8 | 13 - 21 | | Clay, silty, gray, no sand (lacustrine) | 7 | 21 - 28 | | Sand, fine to coarse, fairly clean | 24 | 28 - 52 | | Sand, fine to coarse, lignitic | 8 | 52 - 60 | | Clay, silty, gray, very occasional pebbles, gets stiffer at 72' (lacustrine) | 29 | 60 - 89 | | Clay, silty, some pebbles and small sand grains,
stiff. Looks a lot like above clay, except
more sand grains interspersed and stiffer
(till) | 20 | 89 -109 | | Sand, fine to coarse, predominantly medium | 40 | 109 -149 | | Sand, fine to coarse, some gravel | 20 | 149 -169 | | Sand, medium to coarse with gravel | 18 | 169 -187 | | Sand, coarse with gravel | 22 | 187 -209 | | Sand and gravel
 71 | 209 -280 | Location: 133-47-20ABDDA8 Use of well: Observation Owner and number: SWC 11657 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 120 Altitude of land surface (ft., msl): 970.18 (S) Screened interval (ft.): 112-117 Lithologic log from: SWC Casing diameter: 1.25" Comments: Middle well Date completed: 9/6/85 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, sandy, silty, yellow, oxidized (till) | 11 | 1 - 12 | | Clay, sandy, silty, gray (till) | 11 | 12 - 23 | | Clay, silty (lacustrine) | 6 | 23 - 29 | | Sand, fine to coarse, lignitic bottom 5' | 25 | 29 - 54 | | Clay, silty, no sand, gravel layer at 61-62 | 26 | 54 - 80 | | Clay, silty, occasional pebbles (till ?) | 30 | 80 -110 | | Sand, fine to coarse | 10 | 110 -120 | Location: 133-47-20ABDDA9 Use of well: Observation Owner and number: SWC 11658 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 60 Altitude of land surface (ft., msl): 970.12 (S) Screened interval (ft.): 50-55 Lithologic log from: SWC Casing diameter: 2.00" Comments: West well Date completed: 9/6/85 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, sandy, silty yellow-brown, oxidized (till) | 16 | 1 - 17 | | Clay, sandy, silty, gray (till) | 6 | 17 - 23 | | Clay, silty, no sand | 6 | 23 - 29 | | Sand, fine to coarse with gravel | 28 | 29 - 57 | | Clay, sandy, silty, layers of sand (till) | 3 | 57 - 60 | Location: 133-47-20ABDDB1 Use of well: Piezometer Owner and number: SWC 11642 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 280 Altitude of land surface (ft., msl): 971.06 (S) Screened interval (ft.): 260-265 Lithologic log from: SWC Casing diameter: 1.25" Comments: South well Date completed: 8/27/85 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | <pre>Clay, silty, sandy, yellow, plastic, stiff, many pebbles (till)</pre> | 15 | 1 - 16 | | Clay, silty, no sand, yellow-brown, slightly plastic, soft (lacustrine) | 5 | 16 - 21 | | Gravel | 1 | 21 - 22 | | Sand, fine, medium to coarse, silt and clay lenses | 10 | 22 - 32 | | Sand, fine, medium to coarse, subangular to subrounded | 14 | 32 - 46 | | Silt, gray, slightly plastic, very few returns (lacustrine) | 18 | 46 - 64 | | Sand, medium to coarse, subangular to subrounded, poorly sorted, with a lot of gravel | 6 | 64 - 70 | | <pre>Clay, dark gray, silty, sandy, very stiff, moderately plastic (till)</pre> | 32 | 70 -102 | | Clay, gray, silty, very sandy, some gravel, softer | 9 | 102 -111 | | Sand, fine, some medium size, some silt, returns came slow | 30 | 111 -141 | | Sand, medium to coarse, some gravel | 42 | 141 -183 | | Gravel, subangular to subrounded, some sand, poorly sorted | 97 | 183 -280 | Location: 133-47-20APDDB2 Use of well: Piezometer Owner and number: SWC 11643 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 125 Altitude of land surface (ft., msl): 971.06 (S) Screened interval (ft.): 114-119 Lithologic log from: SWC Casing diameter: 1.25" Comments: Middle well Date completed: 8/28/85 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, silty, sandy, with pebbles, yellow, oxidized (till) | 16 | 1 - 17 | | Clay, silty, yellow brown, soft, slightly plastic (lacustrine) | 4 | 17 - 21 | | Sand, fine to coarse, poorly sorted, yellow | 11. | 21 - 32 | | Sand, fine to coarse, poorly sorted, gray | 4 | 32 - 36 | | Clay, gray, very soft, a little silt, plastic | 3 | 36 - 39 | | <pre>Sand, fine to medium (predominantly fine), very poorly sorted, some lignite</pre> | 27 | 39 - 66 | | Gravel, poorly sorted | 4 | 66 - 70 | | <pre>Clay, dark gray, silty, some sand, very stiff (till)</pre> | 14 | 70 - 84 | | Clay, dark gray, no silt or sand, very stiff, layered (lacustrine) | 5 | 84 - 89 | | Clay, dark gray, silty, sandy, very stiff (till) | 23 | 89 -112 | | Sand, gray, fine (some medium sized grains) | 13 | 112 -125 | Location: 133-47-20ABDDB3 Use of well: Piezometer Owner and number: SWC 11644 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 50 Altitude of land surface (ft., msl): 970.95 (S) Screened interval (ft.): 36-41 Lithologic log from: SWC Casing diameter: 2.00" Comments: North well Date completed: 8/28/85 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, sandy, silty, yellow brown oxidized (till) | 16 | 1 - 17 | | Sand, poorly sorted, yellow brown, oxidized | 10 | 17 - 27 | | Clay, silty, dark gray | 4 | 27 - 31 | | Sand, fine to coarse, poorly sorted, predominantly fine grained | 10 | 31 - 41 | | Silt, few returns, mostly washed out | 9 | 41 - 50 | Location: 133-47-20ABDDD Use of well: Observation Owner and number: SWC MST Principal aquifer: None Depth drilled (ft.): 9.6 Altitude of land surface (ft., msl): 970.47 (S) Screened interval (ft.): 7.2 - 9.6 Lithologic log from: SWC Casing diameter: 1.25" Comments: Installed using a backhoe Date completed: 8/22/85 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Clay, rocky, sandy, silty (till and fill) | , 9 | 0 - 9 | | Sand, minor amounts with other fill material (sand bed for pipeline) | 0.5 | 9 - 9.5 | Location: 133-47-20ACC1 Use of well: Observation Owner and number: SWC 3783 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 265 Altitude of land surface (ft., msl): 968.4 (S) Screened interval (ft.): 238 - 244 Lithologic log from: SWC Casing diameter: 1.25" Comments: Destroyed Date completed: 8/28/69 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil, pebbly loam, black | 2 | 0 - 2 | | Sand, fine, clayey, yellowish gray, soft, loose, dry | 4 | 2 - 6 | | Sand, medium and coarse with some fine gravel, brown, oxidized, subangular to subrounded, poorly to moderately sorted | 8 | 6 - 14 | | Clay, silty and sandy with pebbles, moderately olive brown to light olive gray, soft to moderately soft, cohesive, moderately plastic, oxidized (till) | 6 | 14 - 20 | | Clay, olive gray to dark olive gray, moderately soft, cohesive, plastic, smooth, sticky | 6 | 20 - 26 | | Clay, silt and clayey fine sand, interbedded, various shades of gray with greenish gray and brownish black, soft, loose to slightly cohesive, nonplastic | 36 | 26 - 62 | | Clay, silty with sand grains, pebbles and occasional cobbles, dark brownish gray, slightly hard, brittle, tight (till) | 18 | 62 - 80 | | Clay, sandy with pebbles, light olive gray, moderately soft, slightly cohesive to slightly crumbly, chunky (till) | 20 | 80 -100 | | Silt, light olive gray, soft, slightly friable | 3 | 100 -103 | | Clay, olive gray to dark gray, moderately soft, cohesive, plastic, smooth | 4 | 103 -107 | | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Silt, clayey, light olive gray, soft, slightly cohesive, nonplastic, calcareous | 9 | 107 -116 | | Sand, medium, light gray, loose, clean, subrounded, sorted, some coarse | 5 | 116 -121 | | Clay, very sandy with pebbles, light olive gray
to olive gray, very slightly friable (till) | 21 | 121 -142 | | Sand, fine and medium, light gray, moderately well-sorted, subrounded, interbedded with sandy till as above | 16 | 142 -158 | | <pre>Clay, black, moderately soft, crumbly, 'caving
clay', smooth, waxy</pre> | 3 | 158 -161 | | Silt, clayey to sandy with pebbles and occasional cobbles, light olive gray to olive gray, moderately soft, slightly crumbly, drills tight (till) | 20 | 161 -181 | | Silt and very fine to fine sand, light gray, compacted, drills tight, predominantly quartz with limestone-dolomite and shale, calcareous | 26 | 181 -207 | | Sand, fine and medium, light gray, well-sorted and uniform, appears clean but drills tight in spots, calcareous | 49 | 207 -256 | | Clay, drills tight and rocky (till?) | 8 | 256 -264 | | Boulder, black and white diorite, very hard (didn't get through it) | 1 | 264 -265 | Location: 133-47-20ACC3 Use of well: Observation Owner and number: SWC 9440 Principal aquifer: Undefined Depth drilled (ft.): 40 Altitude of land surface (ft., msl): 968.97 (S) Screened interval (ft.): 23-26 Lithologic log from: SWC Casing diameter: 1.25' Comments: Southeast well Date completed: 9/4/75 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Clay, sandy, silty, pebbly, with shale pebbles, moderate yellowish brown, moderately tight, cohesive, very slightly plastic, small (6-inch) interbedded lenses of sand (till) | 14 | 0 - 14 | | Clay, as above, medium dark to olive gray | 6 | 14 - 20 | | Sand, very fine to coarse, predominantly medium, subangular to subrounded, 75% quartz, 15% carbonates, 10% shale and igneous, well sorted, a few very small interbedded clay layers | 6 | 20 - 26 | | Clay, very sandy, silty, medium gray to olive gray, moderately tight, smooth, cohesive, slightly plastic (lacustrine) | 9 | 26 - 35
| | Sand, as above, a little cleaner | 3 | 35 - 38 | | Clay, as above, (lacustrine) | 2 | 38 - 40 | Location: 133-47-20ACD2 Use of well: Observation Owner and number: SWC 9441 Principal aquifer: Undefined Depth drilled (ft.): 40 Altitude of land surface (ft., msl): 969 (T) Screened interval (ft.): 24-30 Lithologic log from: SWC Casing diameter: 1.25" Comments: Destroyed Date completed: 9/4/75 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Clay, sandy, silty, pebbly, moderate yellowish brown, moderately tight, cohesive, slightly plastic, iron-stained, oxidized | 14 | 0 - 14 | | Clay, as above, medium dark to olive gray (till) | 6 | 14 - 20 | | Clay, silty, sandy, medium gray, tight, cohesive, sticky, slightly plastic (lacustrine) | 3 | 20 - 23 | | Sand, fine to very coarse, predominantly medium to coarse, angular to subrounded, 60% quartz, 25% shale, 10% carbonates, 5% igneous, slightly lignitic, fairly clean, well sorted | 7 | 23 - 30 | | Clay, sandy, silty, pebbly, medium dark to olive gray, tight, cohesive, very slightly plastic (till) | 10 | 30 - 40 | Location: 133-47-20ADB Use of well: Observation Owner and number: SWC 3790 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 260 Altitude of land surface (ft., msl): 971.9 (S) Screened interval (ft.): 254-260 Lithologic log from: SWC Casing diameter: 1.25" Comments: Destroyed Date completed: 9/4/69 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil, pebbly and cobbly loam, black | 2 | 0 - 2 | | <pre>Clay, silty and sandy with pebbles and rocks, yellowish gray, soft, slightly cohesive, jointed, oxidized (till)</pre> | 3 | 2 - 5 | | Clay, silty to sandy with pebbles and cobbles, medium olive brown, moderately soft, cohesive, moderatly plastic, oxidized (till) | 11 | 5 - 16 | | Clay, silty and sandy with pebbles, olive gray, moderately soft to slightly hard, moderately cohesive to slightly brittle (till) | 6 | 16 - 22 | | Sand, medium to coarse, tan, moderately sorted, subangular, predominantly quartz, limestone-dolomite and shale, interbedded with thin stringers of till | 13 | 22 - 35 | | Till, as above, with thin stringers of sand, may also contain lenses of pure clay, samples very soft and hard to examine | 9 | 35 - 44 | | Silt, greenish-gray, clayey with some very fine sand, soft, slightly cohesive, nonplastic, chalky, calcareous | 16 | 44 - 60 | | Clay, silty and sandy with pebbles, dark olive gray, moderately soft and cohesive to slightly hard and brittle, tightly compacted (till) interbedded with lenses or blocks of dark gray, laminated, smooth stiff clay, banded with light gray, highly calcareous silty clay | 44 | 60 -104 | | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | <pre>Clay, dark gray to silt, medium gray to sand, very fine, light gray, transitional</pre> | 9 | 104 -113 | | Sand, fine to medium, gradually becoming coarser with depth, last 10' fine and medium gravel, generally well-sorted, uniform and clean, predominantly granitic derivative, limestone-dolomite and shale, loose, taking lots of water | 147 | 113 -260 | Location: 133-47-20ADB2 Use of well: Piezometer Owner and number: SWC 11708 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 277 Altitude of land surface (ft., msl): 972.11 (S) Screened interval (ft.): 265-270 Lithologic log from: SWC Casing diameter: 1.25" Comments: South well Date completed: 10/22/85 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Fil1 | 5 | 0 - 5 | | Gravel | 1 | 5 - 6 | | Clay, dark yellowish orange, silty, sandy, pebbly, slightly brittle, oxidized (till) | 10 | 6 - 16 | | Clay, olive gray, silty, sandy, pebbly, soft (till) | 5 | 16 - 21 | | Sand | 5 | 21 - 26 | | Clay, as above | 10 | 26 - 36 | | Clay, olive gray, very plastic, soft, (lacustrine) | · 6 | 36 - 42 | | Clay, olive gray, very silty, a few pebbles, soft (till) | 20 | 42 - 62 | | Clay, olive green to brown, slightly to very silty, laminated, from 69' much less silt | 10 | 62 - 72 | | Clay, dark gray, slightly pebbly, (reworked till) boulder at 88' | 34 | 72 -106 | | Clay, olive gray, slightly silty (lacustrine) | 5 | 106 -111 | | Sand, fine to medium, predominantly medium, rounded and subrounded, predominantly quartz, becomes predominantly coarse and very coarse by 140', subangular to subrounded, more carbonates and detrital shale, taking water, interbedded gravel beyond 205', much rougher starting at 216-220' below 120' much fine gravel | 166 | 111 -277 | Location: 133-47-20ADB3 Use of well: Piezometer Owner and number: SWC 11709 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 125 Altitude of land surface (ft., msl): 972.33 (S) Screened interval (ft.): 115-120 Lithologic log from: SWC Casing diameter: 1.25" Comments: North well Date completed: 10/22/85 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Fill | 5 | 0 - 5 | | Gravel | 1 | 5 - 6 | | Clay, dark yellowish orange, silty, sandy, pebbly, slightly brittle, oxidized (till) | 10 | 6 - 16 | | Clay, olive gray, silty, sandy, pebbly, soft (till) | 5 | 16 - 21 | | Sand | 5 | 21 - 26 | | Clay, as above | 10 | 26 - 36 | | Clay, olive gray, very plastic, soft (lacustrine) | 6 | 36 - 42 | | Clay, dark olive gray, pebbly, tight, many small gravel lenses (till) | 20 | 42 - 62 | | Clay, olive gray to brownish gray, slightly to very silty, soft | 11 | 62 - 73 | | Clay, dark gray, predominant sand grains, tight, (fluvially reworked till) | 39 | 73 -112 | | Sand, cobbles 112'-113', thin sand, medium coarse | 13 | 112 -125 | Location: 133-47-20ADD Use of well: Municipal Owner and number: Wahpeton #3 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 290 Altitude of land surface (ft., msl): 969 (T) Screened interval (ft.): 250-290 Lithologic log from: Ervin Drillers Casing diameter: 12" Comments: Date completed: 8/10/73 | Unit description | Thickness (ft.) | Depth (ft.) | |------------------|-----------------|-------------| | Topsoil | 2 | 0 - 2 | | Clay, yellow | 16 | 2 - 18 | | Clay, gray | 24 | 18 - 42 | | Sand, fine, gray | 4 | 42 - 46 | | Clay, hard, gray | 48 | 46 - 94 | | Sand, medium | 27 | 94 -121 | | Clay, gray | 3 | 121 -124 | | Sand, medium | 166 | 124 -290 | Location: 133-47-20ADD2 Use of well: Piezometer Owner and number: SWC 11713 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 275 Altitude of land surface (ft., msl): 968.67 (S) Screened interval (ft.): 268-273 Lithologic log from: SWC Casing diameter: 1.25" Comments: East well Date completed: 10/24/85 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, dark yellowish orange (till) | 16 | 1 - 17 | | Clay, olive gray, soft, plastic, gravel lens 41'-42', below 42' much tighter (till) | 38 | 17 - 55 | | Clay, greenish gray, silty | 7 | 55 - 62 | | <pre>Clay, dark gray, tight, waxy, pebbly,</pre> | 55 | 62 -117 | | Sand, fine to coarse, predominantly fine to moderate, subrounded to rounded, quartz, coarse sand and some gravel by 140', below 200' predominantly coarse sand and fine gravel, below 240' coarser gravel | 158 | 117 -275 | Location: 133-47-20ADD3 Use of well: Piezometer Owner and number: SWC 11714 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.):129 Altitude of land surface (ft., msl): 968.83 (S) Screened interval (ft.): 122-127 Lithologic log from: SWC Casing diameter: 1.25" Comments: West well Date completed: 10/24/85 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Clay, dark yellowish orange, silty, pebbly, soft (till) | 19 | 0 - 19 | | Clay, olive gray, silty, pebbly, soft, plastic, carbonate gravel 41'-43' (till) | 24 | 19 - 43 | | Clay, olive gray, pebbly, tighter, brittle (till) | 6 | 43 - 49 | | Silt, greenish gray, slightly clayey, interbedded with silty clay, fine sand 56'-57', gravel lense about 60'-61' | 14 | 49 - 63 | | Clay, dark gray, tight, waxy, a few prominent sand grains and pebbles, at times appear carbonaceous (till) | 56 | 63 -119 | | Sand | 10 | 119 -129 | Location: 133-47-20BAA1 Use of well: Observation Owner and number: SWC 9444 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 40 Altitude of land surface (ft., msl): 965.86 (S) Screened interval (ft.): 23-26 Lithologic log from: SWC Casing diameter: 1.25" Comments: Date completed: 9/4/75 | Unit description | Thickness (ft.) | Depth (ft.) |
---|-----------------|-------------| | Clay, sandy, silty, pebbly, moderate yellowish brown, moderately tight, cohesive, very slightly plastic (till) | 8 | 0 - 8 | | Sand, very fine to coarse, predominantly medium subangular to subrounded, 70% quartz, 20% carbonates, 10% shale and igneous, clean, well sorted, taking a little water | 12 | 8 - 20 | | Sand, very fine to very coarse, predominantly medium to coarse, 60% quartz, 25% shale, 10% carbonates, 5% igneous, slightly to moderately lignitic, moderately well sorted, clean, gravelly (fine) around 30' | 12 | 20 - 32 | | Clay, sandy, silty, pebbly, medium dark to olive gray, tight, very slight plastic (till) | 8 | 32 - 40 | Location: 133-47-20BAA2 Use of well: Observation Owner and number: SWC 9445 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 140 Altitude of land surface (ft., msl): 965.26 (S) Screened interval (ft.): 128-134 Lithologic log from: SWC Casing diameter: 1.25" Comments: Southwest well Date completed: 9/4/75 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil, sandy clay loam with rocks, black | 2 | 0 - 2 | | Clay, silty and sandy with pebbles, yellowish gray, soft, slightly cohesive, oxidized (till) | 4 | 2 - 6 | | Gravel, fine and medium brown, oxidized, iron-stained, angular to subrounded | 2 | 6 - 8 | | <pre>Clay, as above, with much medium to coarse, iron-stained sand (till)</pre> | 5 | 8 - 13 | | Sand, medium to coarse, tan, well-sorted, generally subangular, mostly quartz and limestone and dolomite | 5 . | 13 - 18 | | Silt, clayey with very fine sand in all combinations, interbedded and laminated, variegated grays to brownish black, generally soft, slightly cohesive and non- to very slightly plastic, lacustrine, occasional coarse sand grains and pebbles, no shells | 30 | 18 - 48 | | Clay, very silty, light olive gray, moderately hard, brittle, very tight, calcareous, greenish tint, very tight | 9 | 48 - 57 | | Silt, light gray, calcareous, soft, slightly cohesive | 5 | 57 - 62 | | Clay, silty to sandy with occasional coarse
sand grains, dark olive gray to dark
brownish gray, slightly hard, brittle,
very tight (till?) | 12 | 62 - 74 | ## Lithologic Log Unit description Thickness (ft.) Depth (ft.) 66 74 -140 Sand, very fine to fine, light gray, loose, calcareous, gradually getting coarser with depth, very coarse in last 20', generally well-sorted and uniform, clean, no clay, taking water Location: 133-47-20BAA3 Use of well: Industrial Owner and number: Minn-Dak D-1 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 45 Altitude of land surface (ft., msl): 964.95 Screened interval (ft.): 33.5-36.5 Lithologic log from: SWC Casing diameter: 4" Comments: South of RR tracks Date completed: 4/14/76 | | \$1 | | |--|-----------------|-------------| | Unit description | Thickness (ft.) | Depth (ft.) | | Clay, till, sand, silt particles | 11.5 | 0 - 11.5 | | Sand and gravel, very poorly sorted, subangular to rounded | 3.5 | 11.5 -15 | | Sand, fine to medium, moderately sorted with some coarse layers | 5 | 15 - 20 | | Sand, fine to very fine, with some larger lignite fragments | 5 | 20 - 25 | | Sand, medium to coarse with some gravel sand, subangular to subrounded | 5 | 25 - 30 | | Sand, coarse, well sorted, clean, subangular to subrounded | 9 | 30 - 39 | | Clay, sandy, silty, very hard drilling (till) | 6 | 39 - 45 | Location: 133-47-20BAA4 Use of well: Piezometer Owner and number: SWC 11701 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 267 Altitude of land surface (ft., msl): 965.33 (S) Screened interval (ft.): 258-263 Lithologic log from: SWC Casing diameter: 1.25" Comments: Middle well Date completed: 10/11/85 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, sandy, silty, yellow brown, oxidized (till) | 14 | 1 - 15 | | Clay, sandy, silty, gray (till) | 4 | 15 - 19 | | Sand, fine, medium to coarse | 12 | 19 - 31 | | Gravel, medium to coarse | 4 | 31 - 36 | | Clay, sandy, silty, gray (till) | 10 | 36 - 46 | | Clay, silty, medium gray (lacustrine) | 10 | 46 - 56 | | Clay, dark gray, stiff, silty (lacustrine) | 22 | 56 - 78 | | Clay, very silty, soft, plastic (lacustrine) | 31 | 78 -109 | | Sand, fine, poorly sorted, dirty | 13 | 109 -122 | | Sand, medium to coarse, moderately sorted, clean | 79 | 122 -201 | | Sand, coarse with gravel | 33 | 201 -234 | | Sand and gravel | 31 | 234 -265 | | Clay, gray (not much return, only drilled a couple feet for room at the bottom of the hole) | 2 | 265 -267 | Location: 133-47-20BAB Use of well: Industrial Owner and number: Minn-Dak D-3 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 60 Altitude of land surface (ft., msl): 963 (T) Screened interval (ft.): 25-28 Lithologic log from: SWC Casing diameter: 4" Comments: Destroyed Date completed: 4/15/76 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Clay, sandy, silty, pebbly (till) | 3 | 0 - 3 | | Sand, silty, very fine to medium, poorly sorted, subangular to rounded, brown | 2 | 3 - 5 | | Sand, medium to coarse, with some fines, brown | 6 | 5 - 11 | | Sand, medium to coarse, becoming coarser with depth, angular to rounded, gravel sized material from 25 to 28, gray | 17 | 11 - 28 | | Clay, no return (silt?) | 0.5 | 28 - 28.5 | | Sand, becoming very coarse gravel at 29½ to 30 | 1.5 | 28.5-30 | | Clay | 3 | 30 - 33 | | Sand, medium | 1 | 33 - 34 | | Clay | 3 | 34 - 37 | | Sand, interfingered, with silt and clay | 12 | 37 - 49 | | Sand, medium to coarse, very poorly sorted,
lots of fine material very angular becoming
more gravelly, cleaner and rounded with depth | 11 | 49 - 60 | Location: 133-47-20BABAB1 Use of well: Piezometer Owner and number: SWC 12003 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 120 Altitude of land surface (ft., msl): 966.07 (S) Screened interval (ft.): 112-117 Lithologic log from: SWC Casing diameter: 1.25" Comments: Date completed: 7/16/87 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay with pebbles (fill material) | 8 | 1 - 9 | | Sand, fine to medium, dirty, oxidized | 7 | 9 - 16 | | Sand, medium to coarse, some gravel, particularly shale fragments, subangular to subrounded | 5 | 16 - 21 | | Gravel, sandy, coarse sand to medium gravel, large proportion of shale fragments, subrounded | 14 | 21 - 35 | | Clay, sandy, silty, light gray (till) | 7 | 35 - 42 | | Clay, sandy, silt, gray, stiff, intermixed with red-
brown to black-brown, clay, soft, plastic | 11 | 42 - 53 | | Clay, sandy, silty, dark gray, stiff, occasional sand grains, also occasionally soft (usually light gray when soft) | 36 | 53 - 89 | | Sand, probably medium to coarse with some gravel; hole mudded up from upper gravel, very few returns | 31 | 89 -120 | Location: 133-47-20BABB Use of well: Piezometer Owner and number: SWC 12010 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 66 Altitude of land surface (ft., msl): 962.74 (S) Screened interval (ft.): 53-63 Lithologic log from: SWC Casing diameter: 2.00" Comments: Date completed: 7/22/87 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, sandy, silty, yellow-brown (oxidized till) | 5 | 1 - 6 | | Sand, medium to coarse, poorly sorted, some gravel | 27 | 6 - 33 | | Clay, light gray, sandy, silty (till) | 7 | 33 - 40 | | Sand, fine to coarse | 12 | 40 - 52 | | Sand and clay layers | 5 | 52 - 57 | | Sand and gravel, shale gravel with clay layers | 6. | 57 - 63 | | Clay, sandy, silty, gray (till) | 3 | 63 - 66 | Location: 133-47-20BAD1 Use of well: Piezometer Owner and number: SWC 11702 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 271 Altitude of land surface (ft., msl): 974.87 (S) Screened interval (ft.): 255-260 Lithologic log from: SWC Casing diameter: 1.25" Comments: east well Date completed: 10/14/85 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Fill | 10 | 0 - 10 | | Topsoil, black, silty, organic | 2 | 10 - 12 | | <pre>Clay, yellowish orange, silty, pebbly, soft, oxidized (till)</pre> | 3 | 12 - 15 | | Sand and gravel, medium sand to gravel 1" dia., predominantly very coarse sand, angular to rounded, predominantly subangular, equal proportions quartz, shale, and carbonates, oxidized stain out of oxidized zone at 28', gravelly below 32' taking much water, less quartz more shale and carbonates | 30 | 15 - 45 | | Gravel, very coarse sand to cobbles, 2" diameter, predominantly 1/8" - 1/4" diameter, rounded and subrounded, shale and carbonates, some quartz and silicates, appears to be
interbedded finer then coarser gravel, predominantly 1/4" to 1/2" diameter by 60', 61'-64' finer sand? | 19 | 45 - 64 | | Clay, dark gray to black, tight, waxy, some sand grains, with light gray laminations of silt (lacustrine) below 70' more sandy and looks more like till with a few pebbles | 20 | 64 - 84 | | Sand, no cuttings return - stays suspended in mud | 7 | 84 - 91 | | Clay, dark olive gray, light gray laminations, slightly silty, sand 98' | 7 | 91 - 98 | | Sand?, no returns, much bit chatter, clay 110-111', 116'-118' | 28 | 98 -126 | | Uni | t description | Thickness (ft.) | Depth (ft.) | |-----|--|-----------------|-------------| | Cla | y, olive gray, very silty, possibly interbedded, silty clay (till) | 9 | 126 -135 | | San | d, as above, must be clayey because kelly falls slowly - bit chatters a lot, medium to very coarse sand suspended in mud, predominantly quartz and subangular below 220' coarser gravel to ½", predominantly very coarse sand to gravel 1/8" more carbonates, rougher drilling below 235' much rougher at 256', interbedded clay 260'-271' | 136 | 135 -271 | Location: 133-47-20BAD2 Use of well: Piezometer Owner and number: SWC 11703 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 150 Altitude of land surface (ft., msl): 975.18 (S) Screened interval (ft.): 135-140 Lithologic log from: SWC Casing diameter: 1.25" Comments: middle well Date completed: 10/16/85 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Fill | 11 | 0 - 11 | | Clay, yellowish orange, pebbly, soft (till) | 4 | 11 - 15 | | Sand and gravel; fine sand to gravel 1/4" diameter, predominantly medium, very coarse sand, angular to rounded, predominantly | 25 | 15 - 40 | | subrounded, oxidized to about 20', below 20' becomes coarser, predominantly very coarse sand and fine gravel, taking water, composed of predominantly shale and carbonates | ~ , | | | Gravel, coarse sand to gravel 1" diameter, predominantly very coarse sand and gravel to 1/4" diameter, predominantly rounded and subrounded, predominantly carbonates, shale, some silicates below 50' predominantly gravel 1/4" to 1/2" diameter, rounded and subrounded, predominantly carbonates and silicates | 26 | 40 - 66 | | Clay, olive gray, becoming dark gray by 70', tight, waxy, a few sand grains, sand lens 86'-87', 89'-90', 91'-92' (till) | 33 | 66 - 99 | | Sand, coarse, very coarse, angular, quartz and carbonates, clay 110'-112' | 26 | 99 -125 | | Clay, olive gray, very silty, fluvial | 9 | 125 -136 | | Sand, as above | 14 | 136 -150 | Location: 133-47-20BAD3 Use of well: Piezometer Owner and number: SWC 11704 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 70 Altitude of land surface (ft., msl): 975.53 (S) Screened interval (ft.): 51-56 Lithologic log from: SWC Casing diameter: 2.00" Comments: West well Date completed: 10/16/85 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Fill | 11 | 0 - 11 | | Clay, yellowish orange, pebbly, soft (till) | 4 | 11 - 15 | | Sand and gravel - medium sand to gravel, 1/4" diameter, predominantly very coarse sand and fine gravel to 1/8" diameter, angular to rounded, predominantly subrounded to rounded, equal proportions quartz, carbonates and shale, oxidized to about 30', becomes more gravelly at 28' | 31 | 15 - 46 | | Gravel, very coarse sand to gravel 1/2" diameter, predominantly gravel 1/4" diameter, angular to rounded, predominantly subrounded, predominantly carbonates and silicates, coarser at 54' to 1" diameter | 15 | 46 - 61 | | Clay, dark gray, boulder at 63' (till) | 9 | 61 - 70 | Location: 133-47-20BBA Use of well: Municipal Owner and number: Wahpeton #1 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 327 Altitude of land surface (ft., msl): 962 (T) Screened interval (ft.): 240-300 Lithologic log from: Ervin Drillers Casing diameter: 12" Comments: Date completed: 7/9/73 | Unit description | Thickness (ft.) | Depth (ft.) | |---------------------|-----------------|-------------| | Topsoil | 2 | 0 - 2 | | Clay, yellow | 15 | 2 - 17 | | Sand, gray | 2 | 17 - 19 | | Clay, gray | 20 | 19 - 39 | | Sand, gray | 1.2 | 39 - 51 | | Clay, hard gray | 45 | 51 - 96 | | Sand, medium | 5 | 96 -101 | | Clay, gray | 2 | 101 -103 | | Sand, medium | 21 | 103 -124 | | Clay, gray | 3 | 124 -127 | | Sand, medium | 199 | 127 -326 | | Granite, decomposed | 1 | 326 -327 | Location: 133-47-20BBA2 Use of well: Observation Owner and number: SWC 9442 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 80 Altitude of land surface (ft., msl): 961.34 (S) Screened interval (ft.): 56-59 Lithologic log from: SWC Casing diameter: 1.25" Comments: South well (east string) Date completed: 9/4/75 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Clay, sandy, silty, pebbly, moderate yellowish brown, moderately tight, cohesive, very slightly plastic, oxidized (till) | 8 | 0 - 8 | | Sand, very fine to coarse, predominantly medium, subangular to subrounded, mostly quartz, some shale, carbonates, fairly clean, well sorted | 2 | 8 - 10 | | Clay, as above, medium dark, to olive gray (till) | 4 | 10 - 14 | | Sand, very fine to very coarse, predominantly medium to coarse, angular to subrounded, 60% quartz, 20% carbonates, 15% shale, 5% igneous, slightly lignitic, moderately well sorted, clean, taking a little water | 22 | 14 - 36 | | Clay, sand, silty, pebbly, moderately dark to olive gray, cohesive, very slightly plastic (till) | 3 | 36 - 39 | | Sand, as above | 12 | 39 - 51 | | Clay, as above (till) | 2 | 51 - 53 | | Sand, as above, gravelly, gravel predominantly, shale and carbonates, some quartz and igneous | 14 | 53 - 67 | | Clay, as above (till) | 13 | 67 - 80 | Location: 133-47-20BBA3 Use of well: Observation Owner and number: SWC 9442A Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 30 Altitude of land surface (ft., msl): 961.34 (S) Screened interval (ft.): 23-26 Lithologic log from: SWC Casing diameter: 1.25" Comments: Middle well (east string) Date completed: 9/4/75 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Clay, sandy, silty, pebbly, moderate yellowish brown, moderately tight, cohesive, very slightly plastic, oxidized (till) | 8 | 0 - 8 | | Sand, very fine to coarse, predominantly medium, subangular to subrounded, mostly quartz, some shale, carbonates, fairly clean, well sorted | 2 | 8 - 10 | | Clay, as above, medium dark to olive gray (till) | 4 | 10 - 14 | | Sand, very fine to very coarse, predominantly medium to coarse, angular to subrounded, 60% quartz, 20% carbonates, 15% shale, 5% igneous, slightly lignitic, moderately well sorted, clean, taking a little water | 16 | 14 - 30 | Location: 133-47-20BBA4 Use of well: Industrial Owner and number: Minn-Dak D-5 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 56 Altitude of land surface (ft., msl): 963.35 (S) Screened interval (ft.): 34-37 Lithologic log from: SWC Casing diameter: 4" Comments: north well (east string) Date completed: 4/14/76 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Clay | 6 | 0 - 6 | | Sand, brown, fine, medium, coarse, poorly sorted, large lignite fragments | 9 | 6 - 15 | | Sand, gray, medium to coarse, poorly sorted | 10 | 15 - 25 | | Sand, gray, medium to fine, moderately sorted, subangular to subrounded | 14 | 25 - 39 | | Clay, very soft, very silty, little sample return | 2.5 | 39 - 41.5 | | Sand, gray, medium to fine, moderately sorted, subangular to subrounded | 2.5 | 41.5-44 | | Sand and gravel, poorly sorted, angular to subrounded | 2 | 44 - 46 | | Sand, fine to very fine, silty, moderately sorted, taking no water | 9 * | 46 - 55 | | Clay, very plastic, no coarse material (lacustrine) | 1 | 55 - 56 | Location: 133-47-20BBA5 Use of well: Observation Owner and number: Minn-Dak 0-5 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 60 Altitude of land surface (ft., msl): 960.57 (S) Screened interval (ft.): 38-41 Lithologic log from: SWC Casing diameter: 1.25" Comments: North of RR tracks Date completed: 4/15/76 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Clay, sandy, silty, pebbly | 6 | 0 - 6 | | Sand, fine to medium, lots of silt sized material, poorly sorted angular to subrounded | 8 | 6 - 14 | | Sand, very fine to fine, very silty, not much sample return | 13 | 14 - 27 | | Clay |
1 | 27 - 28 | | Sand, very silty, very clayey | 2 | 28 - 30 | | Clay, silty, sandy (till) | 5 | 30 - 35 | | Sand, very fine to medium, poorly sorted, very dirty | 12 | 35 - 47 | | Silt, sandy, clayey, poorly sorted, very dirty | 7 | 47 - 54 | | Sand, very fine, very silty, poor sample return | 4 | 54 - 58 | | Silt, no sample return | 2 | 58 - 60 | Location: 133-47-20BBA6 Use of well: Piezometer Owner and number: SWC 11710 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 280 Altitude of land surface (ft., msl): 961.81 (S) Screened interval (ft.): 268-273 Lithologic log from: SWC Casing diameter: 1.25" Comments: North well (west string) Date completed: 10/23/85 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, yellowish orange, silty, clayey, soft (till) | 10 | 1 - 11 | | Sand, fine to coarse, predominantly medium rounded to subrounded | 9 | 11 - 20 | | Silt, olive gray, clayey | 3 | 20 - 23 | | Sand, medium, very coarse, subangular, quartz and carbonates predominant | 13 | 23 - 36 | | Clay, olive gray to black, silty, carbonaceous | 3 | 36 - 39 | | Sand, fine grain, rounded, quartz | 10 | 39 - 49 | | Silt, clayey | 2 | 49 - 51 | | Gravel, very coarse sand to gravel 1/2" diameter, predominantly fine gravel to 1/8" diameter, angular to rounded, quartz, carbonates, silicates and shale (interbedded with till) | 21 | 51 - 72 | | Clay, dark olive gray, silty, some prominant sand grains, slightly brittle (till) | 20 | 72 - 92 | | Sand, fine to coarse, predominantly medium, subrounded, quartz, becomes coarser below 100' to coarse and very coarse sand, more angular gravel at 109', taking water, mixed mud at 140' below 180' appear to be more gravelly | 188 | 92 -280 | Location: 133-47-20BBA7 Use of well: Piezometer Owner and number: SWC 11711 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 120 Altitude of land surface (ft., msl): 961.90 (S) Screened interval (ft.): 110-115 Lithologic log from: SWC Casing diameter: 1.25" Comments: Middle Well (West string) Date completed: 10/23/85 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoi1 | 1 | 0 - 1 | | <pre>Clay, dark yellowish orange, silty, pebbly, soft-brittle (till)</pre> | 13 | 1 - 14 | | Sand and gravel, fine sand to gravel 1/4" diameter predominantly very coarse sand and fine gravel, predominantly subrounded to rounded, quartz, carbonates, shale, lignite | 6 | 14 - 20 | | Silt, olive gray, clayey | 3 | 20 - 23 | | Sand and gravel, as above, boulders at 35' | 13 | 23 - 36 | | Silt, olive gray to brownish gray, clayey, laminated, carbonaceous 40'-45' | 15 | 36 - 51 | | Gravel, very coarse sand to gravel 1/4" diameter, predominantly fine gravel, predominantly shale and carbonates, angular to rounded, interbedded with clay or till | 17 | 51 - 68 | | Clay, dark gray, a few sand grains, occasional laminations (reworked till), becomes more lacustrine in appearance with depth | 23 | 68 - 91 | | Sand, no sample return | 12 | 91 -103 | | Clay, as above | 3 | 103 -106 | | Sand and gravel, fine sand to gravel 1/2" diameter, predominantly gravel to 1/8" diameter, angular to rounded, equal proportions quartz, silicates, carbonates, and shale | 14 | 106 -120 | Location: 133-47-20BBA8 Use of well: Piezometer Owner and number: SWC 11712 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 65 Altitude of land surface (ft., msl): 961.97 (S) Screened interval (ft.): 58-63 Lithologic log from: SWC Casing diameter: 2.00" Comments: South well (west string) Date completed: 10/23/85 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, dark yellowish orange, silty, pebbly, soft (till) | 12 | 1 - 13 | | Sand, fine sand to fine gravel, predominantly very coarse sand, subrounded to rounded, predominantly shale and carbonates, some quartz | 7 | 13 - 20 | | Silt, clayey | 2 | 20 - 22 | | Sand, as above, more quartz, less carbonates, gravelly at 32'-33' | 11 | 22 - 33 | | Clay, olive to greenish gray, silty (fluvial or lacustrine) slightly more silty with depth, carbonaceous around 38' | 8 | 33 - 41 | | Sand, fine grain, rounded, quartz, becomes gravelly around 52' | 13 | 41 - 54 | | Gravel, very coarse sand to gravel 1/4" diameter, predominantly gravel to 1/8", angular to rounded, predominantly shale and carbonates, some silicates | 11 | 54 - 65 | Location: 133-47-20BBABB1 Use of well: Piezometer Owner and number: SWC 12001 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 120 Altitude of land surface (ft., msl): 958.42 (S) Screened interval (ft.): 113-118 Lithologic log from: SWC Casing diameter: 1.25" Comments: West well Date completed: 7/15/87 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil | . 1 | 0 - 1 | | Clay, sandy, silty, yellow (oxidized till) | 5 | 1 - 6 | | Sand, fine to very fine, moderately well sorted, yellow brown, oxidized | 3 | 6 - 9 | | Sand, fine to very fine, moderately well sorted, gray | 10 | 9 - 19 | | Clay, sandy, silty, gray (till) | 2 | 19 - 21 | | Sand and gravel, angular to subrounded | 2 | 21 - 23 | | Clay, sandy, silty, gray (till) | 9 | 23 - 32 | | Gravel, sandy, very coarse, poorly sorted, angular to subrounded | 1 | 32 - 33 | | Clay, sandy, silty, gray (till) | 3 | 33 - 36 | | Sand, gravelly, poorly sorted, angular to subrounded | 15 | 36 - 51 | | Clay, sandy, silty | 1 | 51 - 52 | | Sand, gravelly, poorly sorted, some till or clay layer | s 5 | 52 - 57 | | Clay, sandy, very silty, stiff, not very plastic, becoming more plastic at 70-75' | 39 | 57 - 96 | | Sand, fine to medium | 11 | 96 -107 | | Sand, medium to coarse with gravel | 13 | 107 -120 | Location: 133-47-20BBABB2 Use of well: Piezometer Owner and number: SWC 12002 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 66 Altitude of land surface (ft., msl): 959.67 (S) Screened interval (ft.): 58-63 Lithologic log from: SWC Casing diameter: 2.00" Comments: east well Date completed: 7/16/87 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, sandy, silty, yellow (till) | 5 | 1 - 6 | | Sand, fine, yellow | 3 | 6 - 9 | | Sand, fine, gray | 12 | 9 - 21 | | Clay, sandy, soft, slightly plastic | 2 | 21 - 23 | | Gravel, sandy, coarse | 2 | 23 - 25 | | Clay, sandy, silty, gray | 5 | 25 - 30 | | Gravel, coarse | 1 | 30 - 31 | | Clay, sandy, silty, gray, stiff (till) | 5 | 31 - 36 | | Sand, fine, gray, some medium | 13 | 36 - 49 | | Clay, no returns | 2 | 49 - 51 | | Sand, medium to coarse, some lignite, some gravel, some shale | 3 | 51 - 54 | | Interbedded clay and sand and gravel | 3 | 54 - 57 | | Sand, coarse, poorly sorted, angular to subrounded | 5 | 57 - 62 | | Clay, no returns | 1. | 62 - 63 | | Sand, coarse, poorly sorted | 2 | 63 - 65 | | Clay, sandy, silty, plastic (till) | 1 | 65 - 66 | Location: 133-47-20BBBAB1 Use of well: Piezometer Owner and number: SWC 12000 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 320 Altitude of land surface (ft., msl): 959.09 (S) Screened interval (ft.): 298-303 Lithologic log from: SWC Casing diameter: 1.25" Comments: East well Date completed: 7/14/87 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, very silty, very sandy, pebbly, soft, plastic, cohesive, oxidized pale yellow orange (till) | 7 | 1 - 8 | | Silt, slightly clayey, slightly cohesive, olive gray with much very fine sand settling out in pit | 10 | 8 - 18 | | Clay, very silty, very sandy, pebbly, cobbles at 26', firmer than above, slightly brittle, noticeable Cretaceous pebbles then more limestone sand grains and pebbles with depth at more clay content (till) | 14 | 18 - 32 | | Silt, slightly to very clayey, slightly to very cohesive, light to medium gray, interbedded silty to plastic, non-silty clay | 8 | 32 - 40 | | Clay, slightly to very silty, many shell fragments, firm to soft, waxy, plastic, greenish gray | 9 | 40 - 49 | | <pre>Clay, slightly silty, slightly sandy, pebbly (shale
pebbles), firm, waxy, plastic, dark brown gray,
becomes olive gray (till)</pre> | 24 | 49 - 73 | | Sand, very fine to medium grained, moderately sorted, angular to rounded, predominantly subangular to subrounded, predominantly quartz with some dark minerals, not much clay, clay bed at 84' | 12 | 73 - 85 | | Sand, very fine to medium, predominantly medium grain, moderately well sorted, angular to round, predominantly subangular to rounded, 80% quartz, 20% chert, limestone and dark mineral fragments, clay bed at 96' | 15 | 85 -100 | | Sand, fine to coarse, predominantly medium to coarse, angular to rounded, predominantly subangular to rounded, 80% quartz, 20% other mineral fragments, clay bed at 107' and 117' | 21 | 100 -121 | | Unit description | Thickness | (ft.) | Depth | (ft.) |
---|-----------|-------|-------|-------| | Sand, fine to granule gravel (about 15%), predominantly very coarse sand, angular to round, predominantly subrounded and rounded, predominantly quartz, approximately 30% other mineral fragments, below 143' | 29 | | 121 | -150 | | more gravelly Gravel, very sandy, medium sand to granules, predominantly very coarse sand and granules, as above, below 160', gravel to pebbles 1/2" diameter, round, predominantly granules, equal proportions, igneous and limestone, rougher drilling below 190', real rough at 232', pebbles to 1½" diameter | 159 | | 150 | -309 | | Clay, soft, pale brown to light reddish brown at 316', quartz grains and some dark mineral and weathered feldspar grains (weathered Precambrian) | 11 | | 309- | -320 | Location: 133-47-20BBBAB2 Use Use of well: Piezometer Owner and number: SWC 12000A Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 200 Altitude of land surface (ft., msl): 958.95 (S) Screened interval (ft.): 193-198 Lithologic log from: SWC Casing diameter: 1.25" Comments: East of middle well Date completed: 7/14/87 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | <pre>Clay, very silty, very sandy, pebbly, soft, plastic, cohesive, oxidized, pale yellow orange (till)</pre> | 7 | 1 - 8 | | Silt, slightly clayey, slightly cohesive, olive gray, with much very fine sand settling out in pit | 10 | 8 - 18 | | Clay, very silty, very sandy, pebbly, cobbles at 26', firmer than above, slightly brittle, noticeable Cretaceous pebbles, then more limestone sand grains and pebbles with depth at more clay content (till) | 14 | 18 - 32 | | Silt, slightly to very clayey, slightly to very cohesive, light to medium gray, interbedded silty to plastic, non-silty clay | 8 | 32 - 40 | | Clay, slightly to very silty, many shell fragments, firm to soft, waxy, plastic, greenish gray | 9 | 40 - 49 | | <pre>Clay, slightly silty, slightly sandy, pebbly (shale
pebbles), firm waxy, plastic, dark brown gray,
becomes olive gray (till)</pre> | 24 | 49 - 73 | | Sand, very fine to medium grain, moderately sorted, angular to rounded, predominantly subangular to subrounded, predominantly quartz with some dark minerals, not much clay, clay bed at 84' | 12 | 73 - 85 | | Sand, very fine to medium, predominantly medium grain, moderately well sorted, angular to rounded, predominantly subangular to round, 80% quartz, 20% chert, limestone and dark mineral fragments, clay bed at 96' | 15 | 85 -100 | | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Sand, fine to coarse, predominantly medium to coarse, angular to round, predominantly subangular to round, 80% quartz, 20% other mineral fragments, clay bed at 107' and 117' | 21 | 100 -121 | | Sand, fine to granule gravel (approx. 15%), predominantly very coarse sand, angular to round, predominantly subrounded to round, predominantly quartz, approximately 30% other mineral fragments, below 143' more gravelly | 29 | 121 -150 | | Gravel, very sandy, medium sand to granules, predominantly very coarse sand and granules, as above, below 160', gravel to pebbles ½" diameter, round, predominantly granules equal proportions igneous and limestone, rougher drilling below 190' | 50 | 150 -200 | Location: 133-47-20BBBAB3 Use of well: Piezometer Owner and number: SWC 12000B Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 126 Altitude of land surface (ft., msl): 958.93 (S) Screened interval (ft.): 118-123 Lithologic log from: SWC Casing diameter: 1.25" Comments: Middle well Date completed: 7/15/87 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | <pre>Clay, very silty, sandy, pebbly (limestone pebbles , soft, plastic, cohesive, oxidized pale yellow gray, mottled with light gray (till)</pre> | 8 | 1 - 9 | | Silt, slightly clayey, soft, slightly cohesive, dark mineral grains visible, olive gray, interbedded slightly silty to non-silty waxy clay from 15'-18' | 9 | 9 - 18 | | Sand, very fine, well sorted, 90% quartz with 10% dark minerals | 2 | 18 - 20 | | Clay, silty, sandy, pebbly, soft, cohesive, plastic to slightly brittle, olive gray, visible limestom pebbles, igneous rock at 30' to 31' (till) | 11
ne | 20 - 31 | | Clay, slightly to very silty, soft, plastic, cohesive greenish gray, interbedded, very clayey silt, sand 43'-45' | , 14 | 31 - 45 | | Clay, slightly silty, sandy and pebbly (shale and limestone pebbles, and sand grains), firm, waxy, plastic, dark gray, more till-like texture, less lacustrine or fluvial texture | 2.3 | 45 - 68 | | Clay, very slightly silty, spomadic sand grains and pebbles, firm, waxy, dark gray, appears lacustrine | 6 | 68 - 74 | | Sand, very fine to fine, predominantly very fine angular to rounded, predominantly | 6 | 74 - 80 | | Sand, fine to very coarse and coarse granules, predominantly medium sand, angular to round, predominantly subrounded to round, 85% quartz, 25% dark minerals and feldspar, clay lens 94'-95' | 25 | 80 -105 | | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Sand, fine to very coarse, with granules and fine pebbles, predominantly coarse sand, subrounded to rounded, predominantly | 21 | 105 -126 | | quartz, approximately 20% dark minerals, carbonates, feldspar, etc. | | | Location: 133-47-20BBBAB4 Use of well Use of well: Piezometer Owner and number: SWC 12000C Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 86 Altitude of land surface (ft., msl): 958.87 (S) Screened interval (ft.): 78-83 Lithologic log from: SWC Casing diameter: 2.00" Comments: West of middle well Date completed: 7/15/87 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil . | 1 | 0 - 1 | | Clay, sandy, silty, yellow (oxidized till) | 8 | 1 - 9 | | Clay, sandy, silty, gray, very silty | 10 | 9 - 19 | | Clay, sandy, silty, gray; very sandy, stiffer clay | 10 | 19 - 29 | | Sand, silty, fine, washes out easily | 1 | 29 - 30 | | Clay, sandy, silty, gray; predominantly silty clay, stiff | * 3 | 30 - 33 | | Clay, silty, light gray, moderately plastic, very soft, looks bentonitic | 10 | 33 - 43 | | Sand, medium, poorly sorted | 2 | 43 - 45 | | Clay, very sandy, much coarse sand | 2 | 45 - 47 | | Clay, silty, occasionally sandy, dark gray,
stiff, has the occasional coarse sand grains | 27 | 47 - 74 | | Sand, fine to very fine, silty, subangular to subrounded | 12 | 74 - 86 | Location: 133-47-20BBBAB5 Use of Use of well: Piezometer Owner and number: SWC 12000D Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 55 Altitude of land surface (ft., msl): 958.95 (S) Screened interval (ft.): 43'-53' Lithologic log from: SWC Casing diameter: 2.00" Comments: West well Date completed: 7/15/87 | Unit description | Thickness | (ft.) Depth (ft.) | |--|-----------|-------------------| | Topsoil | 1 | 0 - 1 | | Clay, sandy, silty, yellow brown (till oxidized) | 8 | 1 - 9 | | Silt, clayey, yellow-brown | 1 | 9 - 10 | | Silt, clayey, gray to light gray, turning to clay, very silty, no sand, light gray | 8 | 10 - 18 | | Clay, sandy, gray, very sandy, stiff, slightly brownish (till) | 13 . | 18 - 31 | | Clay, silty, light gray | 12 | 31 - 43 | | Sand, very fine to fine, dirty | 4 | 43 - 47 | | Clay, sandy, silty, light gray (till) | 2 | 47 - 49 | | Sand, fine to medium, dirty | 3 | 49 - 52 | | Clay, sandy, silty, gray (till) | 3 | 52 - 55 | Location: 133-47-20BBD1 Use of well: Industrial Owner and number: Minn-Dak D-7 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 60 Altitude of land surface (ft., msl): 964.59 (S) Screened interval (ft.): 42-45 Lithologic log from: SWC Casing diameter: 4" Comments: Date completed: 4/9/76 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Clay | 5 | 0 - 5 | | Sand, fine to medium, poorly sorted, brown | 5 | 5 - 10 | | Sand, very fine to medium, becoming coarser with depth, subangular to subrounded, poorly sorted, gray, more rounding with depth | 15 | 10 - 25 | | Sand, coarse, with some gravel, subangular to rounded, moderately sorted | , 15 | 25 - 40 | | Sand and gravel, poorly sorted, angular to subrounded | 5 | 40 - 45 | | Gravel and sand, poorly sorted, angular to subrounded | 5 | 45 - 50 | | Sand and gravel, poorly sorted, angular to subrounded | 10 | 50 - 60 | Location: 133-47-20BCA Use of well: Industrial Owner and number: Minn-Dak D-9 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 60 Altitude of land surface
(ft., msl): 964.59 (S) Screened interval (ft.): 42-45 Lithologic log from: SWC Casing diameter: 4" Comments: Date completed: 4/13/76 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Sand, very fine to medium, poorly sorted, angular to subrounded, brown | 15 | 0 - 15 | | Sand, very fine to coarse, very poorly sorted with some rounded to subrounded, gravel, sand, subangular to rounded, gray | 13 | 15 - 28 | | Sand, very fine to medium, poorly sorted,
angular to subrounded, lignitic from
35-40 feet | . 22 | 28 - 50 | | Sand, very fine to coarse, poorly sorted with some gravel, subangular to rounded | 10 | 50 - 60 | Location: 133-47-20BCD2 Use of well: Industrial Owner and number: Minn-Dak D-11 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 52 Altitude of land surface (ft., msl): 965.38 (S) Screened interval (ft.): 42-45 Lithologic log from: SWC Casing diameter: 4" Comments: North well Date completed: 4/9/76 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Clay | 7 | 0 - 7 | | Sand, poorly sorted, with clay lenses of about a foot | 8 | 7 - 15 | | Clay | 1 | 15 - 16 | | Sand, moderate sorting, medium, more dark material | 6 | 16 - 22 | | Clay | 1 | 22 - 23 | | Sand, fine to coarse, predominantly medium becoming coarser with depth, very angular becoming subangular to subrounded with depth | 12 | 23 - 35 | | Sand and gravel, poorly sorted, subangular to subrounded | 5 | 35 - 40 | | Gravel, 2-4 millimeters diameter, subrounded, more dark material | 5 | 40 - 45 | | Clay, firm (till) | 7 | 45 - 52 | BCDI Location: 133-47-20 HOLD Use of well: Observation Owner and number: SWC 9443 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 60 Altitude of land surface (ft., msl): 964.22 (S) Screened interval (ft.): 38-44 Lithologic log from: SWC Casing diameter: 1.25" Comments: Destroyed Date completed: 9/4/75 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Sand, very fine to coarse, predominantly medium, subangular to subrounded, 80% quartz, 15% carbonates, 5% igneous, slightly lignitic, well sorted, clean, oxidized | 8 | 0 - 8 | | Clay, sandy, silty, slightly pebbly, moderately yellow to 14', medium to olive gray, moderately tight, moderately cohesive, very slightly plastic (till?) | 9 | 8 - 17 | | Sand, fine to very coarse, predominantly medium to coarse, angular to subrounded, 60% quartz, 20% shale, 15% carbonates, 5% igneous, moderately lignitic, clean, taking some water | 23 | 17 - 40 | | Sand, as above, about 40% gravel predominantly shale and carbonates, some quartz, and igneous, moderately lignitic, angular to subrounded, poorly sorted | 7 | 40 - 47 | | Clay, very sandy, silty, medium gray, smooth, cohesive, slightly plastic (lacustrine) | 13 | 47 - 60 | Location: 133-47-20BCD3 Use of well: Piezometer Owner and number: SWC 12004 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 140 Altitude of land surface (ft., msl): 964.07 (S) Screened interval (ft.): 130-135 Lithologic log from: SWC Casing diameter: 1.25" Comments: South well Date completed: 7/16/87 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-----------------| | Fill material | 1 | 0 - 1 | | Silt, slightly clayey, light yellow brown, slightly plastic, some fine sand | 12 | 1 - 13 | | Clay, gray, soft, plastic | 8 | 13 - 21 | | Sand, very fine to fine | 7 . | 21 - 28 | | Sand, coarse with medium gravel, coarse gravel 40-42' | 14 | 28 - 42 | | Clay, silty, soft, slightly plastic, light-gray | 15 | 42 - 57 | | Clay, silty, sandy, occasional sand grains, dark gray brown, occasionally dark brown, some layers are light gray, silty and soft, some hard and darker gray. Still occasional sand grain throughout | 55 | 57 - 112 | | Clay, silty, slightly plastic, dark gray | 16 | 112 -128 | | Sand and gravel | 12 | 128 -140 | Location: 133-47-20BCD4 Use of well: Piezometer Owner and number: SWC 12005 Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 48 Altitude of land surface (ft., msl): 964.09 (S) Screened interval (ft.): 36-46 Lithologic log from: SWC Casing diameter: 2.00" Comments: Middle Well Date completed: 7/17/87 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Fill . | 2 | 0 - 2 | | Silt, clayey, yellow | 7 | 2 - 9 | | <pre>Clay, sandy, silty, very soft gray (some oxidized sand) (till)</pre> | * 7 | 9 - 16 | | Clay, silty, slightly stiff, light gray | 5 | 16 - 21 | | Sand, fine | 6 | 21 - 27 | | Sand, medium to coarse, some gravel | 14 | 27 - 41 | | Clay, silty, light gray, soft, very light gray 45'-48' | 7 | 41 - 48 | Location: 133-47-20DDD1 Use of well: Observation Owner and number: SWC 3779 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 290 Altitude of land surface (ft., msl): 966.89 (S) Screened interval (ft.): 248-254 Lithologic log from: SWC Casing diameter: 1.25" Comments: East well Date completed: 8/26/69 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil, pebbly clay loam, black | 2 | 0 - 2 | | Clay, very sandy with pebbles, soft, slightly cohesive, yellowish gray (till) | 4 | 2 - 6 | | Clay, silty to sandy with pebbles, yellowish gray to moderately olive brown with reddish iron-stains, moderately soft, cohesive, moderately plastic, oxidized (till) | 10 | 6 - 16 | | Clay, sandy with pebbles, olive gray,
soft to moderately soft, cohesive,
moderately plastic (till) | 5 | 16 - 21 | | Sand, fine, gray, loose, well-sorted | 2 | 21 - 23 | | Clay, olive gray to dark brownish gray, moderately soft to slightly hard, slightly brittle but can be rolled, smooth, tight | 8 | 23 - 31 | | Gravel, fine with coarse sand, moderately well sorted, subrounded, mainly limestone-dolomite and shale with granitics | 3 | 31 - 34 | | Silt, clayey, light gray, moderately soft, slightly friable, very slightly plastic | 5 | 34 - 39 | | Sand, very fine to medium, light gray, loose, interbedded with friable very fine sandy silt and some silty clay | 20 | 39 - 59 | | Sand, medium, gray, well-sorted and uniform, clean, generally subrounded, mostly limestone-dolomite and granitics | 5 | 59 - 64 | | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Silt, clayey, light olive gray, friable, limey | 5 | 64 - 69 | | Clay, silty to sandy with pebbles and occasional cobbles, olive gray, moderately soft, cohesive, tough (till) | 17 | 69 - 86 | | Clay, as above, interbedded with lenses of very
fine to medium sand and possibly some
fine gravel (till) | 20 | 86 -106 | | Sand, fine, gray, thinly interbedded with light gray highly calcareous silt and darker gray silty clay | 8 | 106 -114 | | Sand, medium, light gray, loose, moderately well-
sorted, subrounded, clean | 11 | 114 -125 | | Sand, fine, possibly silty, predominantly quartz | 11 | 125 -136 | | Clay and silt, interbedded | 7 | 136 -143 | | Sand, fine, light gray, well-sorted, subrounded, calcareous, predominantly quartz | 25 | 143 -168 | | Sand, medium to coarse, sorted but lensed or interbedded, clean, no clay, subangular to subrounded, drills like it is tightly compacted, mainly granitics (mostly quartz) with limestone-dolomite, steadily taking water, really really nice, very permeable | . 71 | 168 -239 | | Gravel, fine to medium with very coarse sand and a few big rocks, moderately rough drilling, subangular to subrounded, mostly granitics and limestone-dolomite, taking water | 24 | 239 -263 | | <pre>Clay (shale?), dark brownish gray, silty, moderately soft, crumbly, waxy, possible organic, calcareous</pre> | 5 | 263 -268 | | Silt and very fine sand, brownish black, slightly friable, organic (?), noncalcareous, drilling mud streaked and very dark | 10 | 268 -278 | | Clay (shale), dark brown, smooth, oily, moderately calcareous, nonplastic, crumbly, chunky | , 12 | 278 -290 | Location: 133-47-20DDD2 Use of well: Observation Owner and number: SWC 9101 Principal aquifer: Undefined Depth drilled (ft.): 80 Altitude of land surface (ft., msl): 967.50 (S) Screened interval (ft.): 48-51 Lithologic log from: SWC Casing diameter: 1.25" Comments: West well Date completed: 9/12/74 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Clay, very silty, sandy, pebbly, pale yellow-
brown; cohesive, sticky, oxidized (till) | 5 | 0 - 5 | | Clay, silty, sandy, pebbly, light-brown, very iron-stained, moderately soft, oxidized (till), sand and gravel lenses | 9 | 5 - 14 | | Clayey, very silty, sandy, pebbly, dark-gray,
soft to moderately soft, sand and gravel
lenses, clay lenses (till) | 28 | 14 - 42 | | Sand,
very fine to medium, medium gray, silty, approximately 90% quartz, 10% carbonates, igneous | 9 | 42 - 51 | | <pre>Clay, silty, very sandy, pebbly, dark gray, dense (till)</pre> | 15 | 51 - 66 | | Sand, fine to medium, gravelly fine, medium gray, subrounded | 2 | 66 - 68 | | Clay, very silty, sandy, pebbly, dark gray, dense,
thin clay lenses (till) | 12 | 68 - 80 | Location: 133-47-21BCB Use of well: Observation Owner and number: SWC 3778 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 220 Altitude of land surface (ft., msl): 967.1 (S) Screened interval (ft.): 189-195 Lithologic log from: SWC Casing diameter: 1.25" Comments: Destroyed Date completed: 8/26/69 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-----------------| | Topsoil, pebbly clay loam, black | 2 | 0 - 2 | | Clay, silty to sandy with pebbles and cobbles, yellowish gray to moderately olive brown with reddish iron stains, soft to moderately soft, cohesive, moderately plastic, oxidized (till) | 14 | 2 - 16 | | Clay, silty to sandy with pebbles and gravel, olive gray, soft to moderately soft, cohesive, moderately plastic (till) | 8 | 16 - 24 | | Silt and very fine to fine sand, gray, slightly cohesive to loose, permeable, predominantly quartz | 20 | 24 - 44 | | Gravel, fine to medium, moderately well sorted, subangular to subrounded, clean - not stained, mostly limestone-dolomite and granitics with shale, nice | 12 | 44 - 56 | | Clay, silty, and very sandy with pebbles and occasional cobbles, olive gray, moderately soft to slightly hard, moderately brittle, tough; contains beds or blocks of smooth tight dark clay, light gray friable silt, and gray, loose, fine to medium sand, occasional streak of fine gravel (till) | 51 | 56 - 107 | | Silt and very fine sand, slightly clayey, light gray to light olive gray, moderately soft, friable to crumbly, chunky, calcareous | 9 | 107 -116 | | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Sand, medium to coarse, very well sorted and uniform, generally between subangular and subrounded, clean, drills fairly tight like a bedrock sand, stands up in hole very good. Very permeable, predominantly quartz and limestone-dolomite | 84 | 116 -200 | | Gravel, fine and medium with a couple of cobbles
and possible streak of very light gray
limey clay, drills fairly rough | 7 | 200 -207 | | Silt, clayey, brownish gray, moderately soft, slightly cohesive, noncalcareous | 2 | 207 -209 | | Sand, medium, white, limey clay matrix, nearly pure quartz, highly calcareous | 2 | 209 -211 | | Shale, black, hard, tight, smooth, waxy, noncalcareous | 9 | 211 -220 | Location: 133-47-21CBA Use of well: Observation Owner and number: SWC 3789 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 262 Altitude of land surface (ft., msl): 964.4 (S) Screened interval (ft.): 258-261 Lithologic log from: SWC Casing diameter: 1.25" Comments: Destroyed Date completed: 9/4/69 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|----------------| | Topsoil, pebbly loam, dry, black | 2 | 0 - 2 | | Clay, silty to sandy with pebbles and cobbles, yellowish gray, soft, slightly cohesive, jointed, sloppy (till) | 3 | 2 - 5 | | Clay, silty with sand grains and pebbles, moderately olive brown, moderatly soft, cohesive, tough (till), oxidized | 21 | 5 - 26 | | Clay, silty with sand grains, pebbles and cobbles, olive gray, moderately soft to slightly hard, cohesive, tough, stiff (till) | 10 | 26 - 36 | | Sand, medium to coarse, moderately sorted, generally subangular, predominantly quartz | 3 | 36 - 39 | | Silt, clayey with very fine sand, greenish gray, soft, slightly cohesive, interbedded | 14 | 39 ~ 53 | | Sand, medium to very coarse with fine gravel,
moderately sorted, subangular to subrounded,
sand mostly quartz and granitics, gravel
mainly limestone-dolomite and shale | 6 | 53 - 59 | | Clay, silty with sand grains, numerous pebbles and occasional cobbles, olive gray, moderately soft, cohesive, stiff, tough, interbedded with smooth, tight, stiff, dark brownish gray clay (till) | 31 | 59 - 90 | | Clay, silty and sandy with pebbles and cobbles,
dark olive gray, slightly hard, slightly
brittle, tight (till) | 20 | 90 -110 | | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Sand, very fine and fine, silty, light olive
gray, loose to slightly cohesive, sugary,
calcareous | 14 | 110 -124 | | Clay, olive gray, soft, cohesive, plastic, smooth, sticky | 4 | 124 -128 | | Sand, fine and medium, tan, well-sorted, fairly uniform, clean, subangular to subrounded, mostly quartz and other granitic derivatives with limestone and dolomite, some shale | 102 | 128 -230 | | Sand, as above, medium to coarse | 32 | 230 -262 | Location: 133-47-21BDA Use of well: Test hole Owner and number: SWC 3777 Principal aquifer: Depth drilled (ft.): 210 Altitude of land surface (ft., msl): 960 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 8/25/69 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil, sandy loam, black | 2 | 0 - 2 | | Sand, clayey with pebbles, yellowish gray, soft, loose (till) | 4 | 2 - 6 | | Clay, silty and sandy with pebbles and cobbles, yellowish gray to moderately olive brown, moderately soft, cohesive, oxidized (till) | 7 | 6 - 13 | | Clay, olive gray, soft, smooth, cohesive, plastic, sticky | 3 | 13 - 16 | | Sand, fine, light olive gray, uniform, generally subrounded, clean | 2 | 16 - 18 | | Clay, with sand grains and pebbles, olive gray, moderately soft, slightly brittle, very sandy (till) | 2 | 18 - 20 | | Gravel, fine, well-sorted, subangular to subrounded, mostly limestone-dolomite and granitics, some shale, clean | . 4 | 20 - 24 | | Clay, as above, olive gray, very sandy clay with pebbles, moderately soft (till) | 4 | 24 - 28 | | Clay, as above, interbedded with lenses of medium to very coarse sand and fine gravel, occasional cobble, medium sand at 40 to 50% of section | 19 | 28 - 47 | | Clay, dark gray, moderately soft, cohesive, plastic, sticky, smooth, light gray, limey inclusions | 3 | 47 - 50 | | Unit description | Thickness (ft. |) Depth (ft.) | |---|----------------|---------------| | Clay, silty and sandy with pebbles, olive gray, moderately cohesive (till) | 7 | 50 - 57 | | Sand, medium, light olive gray, well-sorted and uniform, clean, subangular to subrounded, predominantly quartz, calcareous | 7 | 57 - 64 | | Silt, clayey to sandy (very fine), light olive
gray to olive gray, soft, friable to slightly
cohesive, nonplastic, calcareous | 12 | 64 - 76 | | Clay, very sandy with pebbles and occasional cobbles, moderately soft to slightly hard, moderately brittle (till, may have some slight permeability to it, interbedded with lenses of fine to medium gray, sorted, generally subrounded sand and some fine gravel, it's about 1/2 till and 1/2 sand | : | 76 -134 | | Sand, medium, light gray, well-sorted, generally subrounded, clean, calcareous, predominantly quartz and granitic derivatives | 7 | 134 -141 | | Clay, as above, very sandy clay with interbedded fine to medium sand lenses (till) | 14 | 141 -155 | | Clay, as above, with interbedded lenses of smooth dark gray clay and olive gray silty clay (till) | 10 | 155 -165 | | Sand, medium to coarse, well sorted and uniform, generally subangular to subrounded, clean, mainly quartz and granitics with limestone and dolomite, a little shale | 20 | 165 -185 | | Clay, dark gray, smooth, moderately soft, cohesive, plastic, tight, interbedded with silt, fine to medium sand and a little gravel | 18 | 185 -203 | | Boulder | 2 | 203 -205 | | Shale, black, hard, tight, noncalcareous | 5 | 205 -210 | Location: 133-47-21CBB1 Use of well: Observation Owner and number: SWC 3787 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 310 Altitude of land surface (ft., msl): 968.2 (S) Screened interval (ft.): 257-260 Lithologic log from: SWC Casing diameter: 1.25" Comments: Destroyed Date completed: 9/3/69 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil, pebbly cobbly loam, dry, black | 2 | 0 - 2 | | Clay, sandy, yellowish gray, rocky, soft, slightly cohesive, fractured and jointed, oxidized (till) | 3 | 2 - 5 | | Clay, silty and sandy with pebbles
and cobbles, moderately olive brown, moderately soft, cohesive, moderatly plastic, oxidized (till) | 12 | 5 - 17 | | Clay, silty to sandy with pebbles and cobbles, olive gray, moderately soft, cohesive, moderately plastic, tough (till) | 25 | 17 - 42 | | Silt and very fine sand, clayey, greenish gray, soft, slightly cohesive, calcareous | 5 | 42 - 47 | | Sand, medium, well-sorted, subangular, predominantly quartz with limestone-dolomite and shale, clean | 4 | 47 - 51 | | Silt, clayey with very fine sand, brownish gray, soft, slightly cohesive, organic | , 2 | 51 - 53 | | Sand, fine, gray, moderately sorted, subangular to subrounded, predominantly quartz | 4 | 53 - 57 | | Clay, silty with sand grains, pebbles and cobbles, olive gray to dark olive gray, moderately soft to slightly hard, stiff, tough, includes lenses or blocks of dark gray, smooth, laminated, very stiff, tight clay (till) | 47 | 57 -104 | | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Sand, very fine, clayey and silty, light olive gray, soft, slightly cohesive, calcareous | 9 | 104 -113 | | Sand, medium with some coarse, tan, well-sorted and uniform, clean, subangular to subrounded, predominantly quartz and granitic derivatives with limestone-dolomite and some indurated dark gray shale | 13 | 113 -126 | | Clay, sandy, olive gray, soft, cohesive, moderately plastic, sticky | 3 | 126 -129 | | Sand, as above, predominantly medium to about 160', predominantly coarse to about 220', predominantly very coarse to about 270', predominantly fine gravel to T.D. of 310', very clean, well-sorted, and uniform, taking water | 181 | 129 -310 | Location: 133-47-21CBB2 Use of well: Observation Owner and number: SWC 3788 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 260 Altitude of land surface (ft., msl): 966.8 (S) Screened interval (ft.): 248-251 Lithologic log from: SWC Casing diameter: 1.25" Comments: Destroyed Date completed: 9/4/69 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil, pebbly loam, dry, black | 2 | 0 - 2 | | <pre>Clay, silty and sandy with pebbles, yellowish gray, soft, slightly cohesive, jointed, 'sloppy', oxidized (till)</pre> | 3 | 2 - 5 | | Clay, silty to sandy with pebbles and cobbles, moderately olive brown, moderately soft, cohesive, moderately plastic, tough, oxidized (till) | 20 | 5 - 25 | | Clay, silty and sandy with pebbles and cobbles, olive gray, moderately soft, cohesive, moderately plastic, stiff, tough (till) | 14 | 25 - 39 | | Silt, clayey and sandy (very fine) greenish
gray to clive gray, interbedded, generally
soft, slightly to moderately cohesive,
non- to slightly plastic, calcarecus | 14 | 39 - 53 | | Sand, medium to coarse, sorted, subangular, predominantly quartz with limestone-dolomite | 4 | 53 - 57 | | Silt, clayey, olive gray to dark brownish gray,
soft, very slightly cohesive, organic,
calcareous | 7 | 57 - 64 | | Clay, silty with sand grains, pebbles and cobbles, olive gray to dark olive gray, moderately soft to slightly hard, very stiff and tough, includes blocks of dark gray, smooth, stiff, tight clay (till) | 41 | 64 -105 | | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Sand, clayey to silty, light to medium gray, loose to slightly cohesive, interbedded | 11 | 105 -116 | | Sand, predominantly fine to about 140', predominantly medium to about 180', predominantly coarse to about 220' and predominantly very coarse to T.D. of 260', generally clean, well sorted and uniform, subangular to subrounded, mainly quartz and granitic derivatives, with limestone-dolomite with some shale; drills easy, taking water | 144 | 116 -260 | Location: 133-47-28ABB Use of well: Observation Owner and number: SWC 3782 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 220 Altitude of land surface (ft., msl): 952.7 (S) Screened interval (ft.): 178-181 Lithologic log from: SWC Casing diameter: 1.25" Comments: Destroyed Date completed: 8/28/69 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil, very fine sand, black | 3 | 0 - 3 | | Sand, very fine to fine, clayey, yellowish gray, loose | 4 | 3 - 7 | | Clay, silty to sandy with pebbles and rocks, yellowish gray and moderately olive brown, | 6 | 7 - 13 | | soft, cohesive, moderately plastic, oxidized (till) | 8 | | | Clay, silty and sandy with pebbles, light olive
gray to olive gray, soft, cohesive, slightly
to moderately plastic (till) | . 8 | 13 - 21 | | Sand, medium to coarse, light gray, well sorted, subangular to subrounded, quartz and limestone-dolomite and shale | 7 | 21 - 28 | | Clay, silty and sandy with coarse sand grains and pebbles and cobbles, olive gray, soft to moderately soft, moderately cohesive and plastic, interbedded with lenses of fine to coarse sand and silt (till) | 23 | 28 - 51 | | Sand, very fine, clayey and silty with pebbles
and occasional cobbles, light olive gray,
slightly hard, brittle, tightly compacted
(till) | 46 | 51 - 97 | | Clay, as above, interbedded with blocks or lenses of clay, silt, and fine to coarse sand, gravelly from 116-125 (till) | 28 | 97 -125 | | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Clay, olive gray with light gray spots and streaks, soft to moderately soft, cohesive, plastic, smooth, sticky, tight | 9 | 125 -134 | | Sand, very fine to fine, silty, light gray, thinly interbedded, loose | 10 | 134 -144 | | Sand, predominantly medium, varies from fine
to coarse, well-sorted, generally
subrounded, clean and uniform, mainly
quartz, calcareous | 55 | 144 -199 | | Shale, black, smooth, waxy, hard, tight, noncalcareous, possibly fossiliferous with streaks of sand | 21 | 199 -220 | Location: 133-47-28BBB Use of well: Test hole Owner and number: SWC 2314 Principal aquifer: Depth drilled (ft.): 73.5 Altitude of land surface (ft., msl): 969 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 9/16/64 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil, black | 1 | 0 - 1 | | Clay, grayish orange, with patches of light brown, shale, limestone, quartz, gypsum, dolomite fragments vary in size, angular to subrounded, highly calcareous, cohesive, oxidized (till) | 13 | 1 - 14 | | Clay, dark greenish gray to clive gray, cohesive, shale, quartz, dolomite, limestone, lignite unoxidized, highly calcareous, grains vary greatly in size, angular to subangular (till) | 24 | 14 - 38 | | Sand, coarse, composed almost exclusively of shale, some limestone, dolomite, quartz, poor sortings, angular to subrounded, average grain size 2 mm or less, reaches up to 20 mm, down to silt size | 2 | 38 - 40 | | Clay, silty, olive gray to dark greenish gray, quartz, dolomite, limestone, pyrite, shale, cohesive, hard, grain size varies with an average of about 1/2 mm, occasionally a very sandy silt is observed, same composition and color as other till, both highly calcareous (till) | 19 | 40 - 59 | | Sand, quartz, shale, limestone, dolomite, fairly poorly sorted, angular to subrounded, average size 1 to 1½ mm | 5 | 59 - 64 | | Clay, olive gray, almost exclusively quartz, some limestone and dolomite, very highly calcareous, some seams or beds of greenish gray till which is sandy, contains shale, quartz, dolomite, lignite, grains are about 1/2 mm are less subangular to well rounded, highly calcareous (till) | 9.5 | 64 - 73.5 | Location: 133-47-28DCB Use of well: Test hole Owner and number: SWC 3954 Principal aquifer: Depth drilled (ft.): 400 Altitude of land surface (ft., msl): 950 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 5/20/70 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Fill (dike for lagoon), clay, yellow and black, smooth, tight | 12 | 0 - 12 | | Sand, fine and medium with some fine gravel, poorly sorted, oxidized, subangular, mostly granitics and shale with carbonates | 7 | 12 - 19 | | Clays, silty with sand grains and pebbles, light
olive gray to olive gray, soft to moderately
soft, moderatly cohesive (till) | 9 | 19 - 28 | | Sand, medium, light gray, well sorted, subrounded, quartzose, clean | 4 | 28 - 32 | | Clay, very silty to sandy with pebbles, olive
gray, moderately soft, moderately cohesive (till) sandy lenses | 44 | 32 - 76 | | Sand, fine and medium, gray, well sorted, uniform, subrounded, mostly quartz and granitics with some shale and carbonates, occasional flakes of lignite | 30 | 76 -106 | | Sand, as above, interbedded with gray silt and clayey silt, occasional streak of gravel | 25 | 106 -131 | | Sand, fine and medium, mostly medium, gray but
dries white, well sorted and uniform, drills
tight like consolidated sand | 23 | 131 -154 | | Clay, silty with sand grains and pebbles, olive gray, moderately soft, cohesive, slightly plastic (till) | 8 | 154 -162 | | Sand, medium, gray, well sorted, uniform, subrounded, quartzose | 34 | 162 -196 | | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Clay, silty with sand grains and pebbles, olive gray, moderately soft, slightly brittle to moderately cohesive, non- to slightly plastic, tightly compacted (till) | 51 | 196 -247 | | Gravel, sandy, poorly sorted, subangular to subrounded | 2 | 247 -249 | | Sandstone, gray, very fine grained, very indurated, put on rock bit | 4 | 249 -253 | | Siltstone, calyey to very sandy, thinly interbedded, variegated grays to black, occasionally greenish or white, possibly bentonite streaks, highly organic, turns mud thick and dark with cily scum. Drills very tight but cuttings usually soft to moderately soft, very poor sample return - using rock bit, interbedded thin lenses of sandstone and possibly limestone, some pyrite concentrations | 147 | 253 -400 | Location: 133-47-28DCD1 Use of well: Piezometer Owner and number: SWC 12007 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 260 Altitude of land surface (ft., msl): 957.33 (S) Screened interval (ft.): 238-243 Lithologic log from: SWC Casing diameter: 1.25" Comments: South well Date completed: 7/22/87 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, fill | 4 | 1 - 5 | | Clay, brown, sandy, silty | 4 | 5 - 9 | | Clay, sandy, silty gray (till) | 3 | 9 - 12 | | Sand, medium | 6 | 12 - 18 | | Clay, sandy, silty, yellow brown (oxidized till) | 6 | 18 - 24 | | Gravel, medium, yellow, oxidized | 2 | 24 - 26 | | Clay, sandy, silty, yellow brown (oxidized till) | 5 | 26 - 31 | | Clay, sandy, silty, gray, rock at 55' (till) | 26 | 31 - 57 | | Sand, fine to coarse, poorly sorted, some gravel, very coarse gravel from 60-61' | 11 | 57 - 68 | | Clay, sandy, silty, light gray (till) | 20 | 68 - 88 | | Sand, fine to coarse, some gravel | 5 | 88 - 93 | | Clay, sandy, silty, light gray, soft, sand layers at 109 and 111, gravel at 116-118', medium gray and stiffer after 118', rock at 143' (till) | 54 | 93 -147 | | Sand, fine to coarse, some gravel | 5 | 147 -152 | | Clay, very sandy, medium gray (till) | 21 | 152 -173 | | Sand, fine and silty | 4 | 173 -177 | | Sand and gravel, medium to coarse | 11 | 177 -188 | | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Clay, no returns, drilled like till | 2 | 188 -190 | | Sand, medium to coarse, some gravel, occasional small clay layers | 53 | 190 -243 | | Rock, granite | 1 | 243 -244 | | Clay, brownish-gray, silty, some sand | 12 | 244 -256 | | Clay, dark gray, waxy, some silty particles (Cretaceous shale) | 4 | 256 -260 | Location: 133-47-28DCD2 Use of well: Test hole Owner and number: SWC 12008 Principal aquifer: Depth drilled (ft.): 96 Altitude of land surface (ft., msl): 957 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Cemented shut Date completed: 7/22/87 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, brown, oxidized | . 8 | 1 - 9 | | Clay, gray, sandy | 3 | 9 - 12 | | Sand, gray | 6 | 12 - 18 | | Clay, sandy, silty, yellow brown, oxidized gravel 27-29' (oxidized till) | . 15 | 18 - 33 | | Clay, sandy, silty, gray (till) | 26 | 33 - 59 | | Sand, fine to coarse, some gravel | 9 | 59 - 68 | | Clay, sandy, silty, gray (till) | 28 | 68 - 96 | Location: 133-47-28DCD3 Use of well: Piezometer Owner and number: SWC 12009 Principal aquifer: Undefined Depth drilled (ft.): 70 Altitude of land surface (ft., msl): 957.33 (S) Screened interval (ft.): 60-65 Lithologic log from: SWC Casing diameter: 2.00" Comments: North well Date completed: 7/22/87 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Fill material | 8 | 1 - 9 | | Clay, sandy, silty, yellow (oxidized till) | 3 | 9 - 12 | | Sand, fine to medium to coarse | 8 | 12 - 20 | | Clay, sandy, silty, yellow-brown (oxidized till) | 13 | 20 - 33 | | Clay, sandy, silty, gray, rock at 35'-36' (till) | 28 | 33 - 61 | | Sand, fine to medium to coarse | 6 | 61 - 67 | | Clay, sandy, silty, gray (till) | 3 | 67 - 70 | Location: 133-47-29BAB Use of well: Test hole Owner and number: SWC 3780 Principal aquifer: Depth drilled (ft.): 240 Altitude of land surface (ft., msl): 963 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 8/27/69 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil, pebbly loam, black | 1 | 0 - 1 | | <pre>Clay, silty and very sandy, slightly cohesive, yellowish gray, soft, jointed, dry, 'sloppy'</pre> | 3 | 1 - 4 | | Clay, silty with sand grains and pebbles, yellowish gray to moderately olive brown with reddish iron stains, moderately soft, cohesive, moderately plastic, tight (till) | 11 | 4 - 15 | | Clay, silty to sandy with pebbles, olive gray to
dark greenish gray, soft to moderately
soft, cohesive, moderately plastic, contains
sandy and gravelly streaks (till) | 20 | 15 - 35 | | Clay, olive gray, soft, smooth, cohesive, plastic, sticky - grading to silt, light gray, soft, slightly cohesive, nonplastic, highly calcareous | 18 | 35 - 53 | | Sand, very fine, clayey, olive gray, very slightly cohesive, predominantly quartz | 11 | 53 - 64 | | Gravel, fine with medium, moderately sorted, generally subrounded, mainly shale and limestone-dolomite with granitics | 7 °, | 64 - 71 | | Silt, clayey with very fine sand, moderately soft, tightly compacted, crumbly, calcareous | 29 | 71 -100 | | Clay, silty and sandy with pebbles, olive gray, moderately soft, cohesive, interbedded fine gravelly streaks (till) | 15 | 100 -115 | | Sand, fine to medium, gray, sorted, but may have streaks of clay or till | 22 | 115 -137 | | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Clay, smooth, moderately soft, olive gray to dark gray, cohesive, plastic, sticky | 10 | 137 -147 | | Sand, fine to medium, gray, well-sorted, subrounded, clean, last 5' fairly coarse | 13 | 147 -160 | | Silt, clayey to sandy (very fine), thinly interbedded and laminated, medium soft to slightly hard, brittle to crumbly, general light gray color, calcareous | 18 | 160 -178 | | Gravel, fine and medium with cobble stones, rough drilling, mainly granitics | 6 | 178 -184 | | Clay, dark gray, moderately soft, cohesive, plastic | 4 | 184 -188 | | Gravel, fine to coarse with cobbles, rough drilling | 10 | 188 -198 | | Clay, silty with sand grains and occasional pebbles,
dark brownish gray, slightly hard, brittle,
tightly compacted, calcareous, mostly blocks
of reworked bedrock shale, occasional rocks | 15 | 198 -213 | | Sand, (till) Sand, medium, light gray, medium well sorted, generally subrounded, clean and uniform, predominantly quartz, not taking much water, mud fairly heavy, poor sample return | 13 | 213 -226 | | Shale, black, moderately soft to slightly hard, slightly brittle, tight, very oily or organic, noncalcareous | 3 | 226 -229 | | Shale, very silty, medium light gray, moderately soft, moderately cohesive, highly calcareous | 11 | 229 -240 | Location: 133-47-29BAB2 Use of well: Observation Owner and number: SWC 9100 Principal aquifer: Undefined Depth drilled (ft.): 80 Altitude of land surface (ft., msl): 963.1 (S) Screened interval (ft.): 65-68 Lithologic log from: SWC Casing diameter: 1.25" Comments: Date completed: 9/12/74 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil, clayey, silty loam, black | 1 | 0 - 1 | | Clay, very silty, sandy, pebbly, pale yellow-
brown, very sticky, cohesive, very
oxidized, sand and gravel lenses (till) | 3 | 1 - 4 | | Clay, silty, sandy, pebbly, dark yellow-orange
to moderately yellow-brown, firm, dense, iron-
stained, organic, oxidized, sand and gravel
lenses (till) | 12 | 4 - 16 | | Slightly clayey, very silty, very sandy,
slightly pebbly, medium dark gray, slightly to medium friable, sand and gravel lenses, thin dark-gray, plastic till approximately 10-29' (till) | 24 | 16 - 40 | | Sand, very fine, silty, slightly clayey, medium dark gray, slightly sticky, slightly friable | 28 | 40 - 68 | | Clay, silty, sandy, pebbly, dark gray, slightly plastic, dense (till) | 12 | 68 - 80 | Location: 133-47-29DAA Use of well: Test hole Owner and number: SWC 3781 Principal aquifer: Depth drilled (ft.): 250 Altitude of land surface (ft., msl): 965 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 8/28/69 | Unit description | Thickness (| ft.) Depth (ft.) | |--|-------------|------------------| | Topsoil, pebbly loam, black | 2 | 0 - 2 | | Clay, silty with sand grains and pebbles,
yellowish gray, moderately soft,
cohesive, moderately plastic, oxidized
(till) | 4 | 2 - 6 | | Clay, silty and sandy with pebbles and thin lenses of sand and fine gravel, yellowish gray to moderately olive brown, iron-stained, soft, moderately cohesive, slightly plastic, oxidized (till) | 10 | 6 - 16 | | Clay, silty and sandy with pebbles, olive gray, soft, cohesive, moderately plastic (till) | 22 | 16 - 38 | | Gravel, fine and medium with a few cobbles, moderately well-sorted, generally subrounded, predominantly limestone- dolomite with granitics and shale, clean | 16 | 38 - 54 | | Silt and very fine sand, light gray, soft, slightly cohesive, nonplastic, calcareous, predominantly quartz | 10 | 54 - 64 | | Sand, fine and medium, sorted, subrounded, loose, predominantly quartz with limestone-dolomite and shale | 14 | 64 - 78 | | Clay, olive gray, soft, smooth, cohesive, plastic, sticky | 4 | 78 - 82 | | Silt, clayey, light gray to olive gray, laminated, soft, moderately cohesive, slightly to moderately plastic, calcareous | 11 | 82 - 93 | | Clay, silty to sandy with pebbles, olive gray, soft
to moderately soft, cohesive, slightly
plastic to slightly brittle, occasional
cobbles (till) | 32 | 93 -125 | | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Boulder, granite | 2 | 125 -127 | | Clay, olive gray, soft, smooth, cohesive, plastic, sticky | 6 | 127 -133 | | Sand, medium, light olive gray, well sorted, subrounded, clean | 7 | 133 -140 | | Clay, silty, light olive gray, soft, moderately cohesive, moderately plastic | 3 | 140 -143 | | Sand, fine and medium with some coarse, interbedded, light gray, subrounded, predominantly quartz with limestone-dolomite and shale, drills easy, taking a little water | 13 | 143 -156 | | Clay, silty to sandy with pebbles and occasional cobbles, moderately soft to slightly hard, tightly compacted, moderately brittle (till) | 39 | 156 -195 | | Clay, as above, interbedded with lenses or blocks of dark gray and brownish black, tight, waxy, smooth clay (till) | 21 | 195 -216 | | Clay, as above, without clay lenses (till) | 25 | 216 -241 | | Shale, black, slightly hard, smooth, tight, waxy, noncalcareous | 9 | 241 -250 | Location: 133-47-33BAB Use of well: Test hole Owner and number: SWC 12006 Principal aquifer: Depth drilled (ft.): 220 Altitude of land surface (ft., msl): 955 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Cemented shut Date completed: 7/21/87 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Fill . | 4 | 0 - 4 | | Clay, soft, plastic, oxidized | 14 | 4 - 18 | | <pre>Clay, sandy, silty, yellow, oxidized, more gravel at 33' (till)</pre> | 25 | 18 - 43 | | Clay, sandy, silty, light gray | 2 | 43 - 45 | | <pre>Clay, sandy, very silty, yellow brown (till,
oxidized)</pre> | 6 | 45 - 51 | | Clay, sandy, silty, gray (till) | 66 | 51 -117 | | Sand, coarse, poorly sorted | 1 | 117 -118 | | Clay, sandy, silty, light gray (till) | 27 | 118 -145 | | Sand, fine to medium, poorly sorted occasional coarse grains, not much return | . 5 | 145 -150 | | Clay, silty, stiff, dark gray, slightly plastic, waxy (Cretaceous shale) | 70 | 150 -220 | Location: 133-48-1BAA Use of well: Test hole Owner and number: SWC 3967 Principal aquifer: Depth drilled (ft.): 100 Altitude of land surface (ft., msl): 951 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 5/24/70 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Roadfill, clay, tight | 4 | 0 - 4 | | Clay, silty with occasional sand grains and pebbles, yellowish gray, soft, smooth, sticky, tight (washed till) | 5 | 4 - 9 | | Clay, silty to sandy with pebbles, reddish, moderately olive brown, moderately soft, chunky, moderately cohesive, tight, oxidized (till) | 23 | 9 - 32 | | Clay, silty to sandy with pebbles, olive gray to dark olive gray, moderately soft to slightly hard, cohesive, tightly compacted, occasional blocks of clay and silt (till) | 68 | 32 -100 | Location: 133-48-IDDD2 Use of well: Test hole Owner and number: SWC 3959 Principal aquifer: Wahpeton Shallow Sand ? Depth drilled (ft.): 240 Altitude of land surface (ft., msl): 945 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Water sample taken from open hole Date completed: 5/22/70 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil, silty loam, black | 1 | 0 - 1 | | Clay, yellowish gray, soft, smooth, cohesive, moderately plastic, slightly sticky, tight | 5 | 1 - 6 | | Clay, silty with sand grains and pebbly, yellowish brown and grayish yellow, soft to moderately soft, cohesive, moderately plastic, oxidized, last 3' gray (till) | 12 | 6 - 18 | | Silt, grayish green, soft, crumbly | 10 | 18 - 28 | | Clay, greenish gray, moderately soft, brittle, tight | 5 | 28 - 33 | | Clay, silty to sandy with pebbles, olive to dark olive gray, cohesive, tight (till) | 20 | 33 - 53 | | Sand, very fine to fine, clayey to silty, interbedded, light olive gray, soft, loose to slightly cohesive | 19 | 53 - 72 | | Clay, silty and sandy with pebbles, olive to dark olive gray, moderately soft to slightly hard, chunky, slightly crumbly, tightly compacted (till) | 25 | 72 - 97 | | Clay, dark brownish gray, moderately soft, smooth, tight, stains | 7 | 97 -104 | | Clay, sandy with pebbles, dark gray, slightly hard, slightly crumbly, chunky, tight, contains lenses of fine to medium sand (till) | 10 | 104 -114 | | Clay, dark brownish gray to black, as above | 5 | 114 -119 | | Clay, very sandy with pebbles, olive to dark olive
gray, slightly hard and brittle, tight,
moderately crumbly, contains numerous lenses
of fine to medium sand (till) | 45 | 119 -164 | | Unit description | Thickness (| ft.) Depth | (ft.) | |--|-------------|------------|-------| | Silt, clayey to sandy (very fine), white with
bluish and grayish tints, moderately soft
to slightly hard, contains numerous specks,
fossiliferous, absolutely noncalcareous,
drills tight, thickens moderately | 33 | 164 | -197 | | Shale, silty, brownish black, hard, brittle, smooth, oily, mica specks, possibly fossiliferous (small bugs) | 15 | 197 | -212 | | Silt and clayey sand, as above, with interbedded
shale, variegated white to black, moderately
soft to hard, slightly crumbly to brittle,
all noncalcareous | 28 | 212 | -240 | Location: 133-48-2ADA Use of well: Observation Owner and number: SWC 3958 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 280 Altitude of land surface (ft., msl): 948.2 (T) Screened interval (ft.): 88-91 Lithologic log from: SWC Casing diameter: 1.25" Comments: Destroyed Date completed: 5/21/70 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil, silty loam, black | 2 | 0 - 2 | | Clay, silty, yellowish gray, soft to moderately soft, cohesive, plastic, sticky, smooth | 12 | 2 - 14 | | Silt, light olive gray, soft, chunky, crumbly, calcareous | 7 | 14 - 21 | | Clay, silty, olive gray, soft, cohesive, plastic, smooth, tight | 9 | 21 - 30 | | Silt and very fine sand, clayey, light olive gray
to clive gray, soft, non- to moderately
cohesive, non- to slightly plastic, calcareous | 12 | 30 - 42 | | Sand, very fine to fine, silty, light olive gray,
loose to slightly cohesive, predominantly
quartz with shale, some carbonates | 18 | 42 - 60 | | Sand, medium to coarse, medium well sorted, subangular to subrounded, clean, mostly granitics and carbonates with shale; taking water | 15 | 60 - 75 | | Clay, silty to sandy with pebbles, clive gray, moderately soft to slightly hard, tightly compacted (till) | 7 | 75 - 82 | | Sand, coarse with fine gravel, subangular to subrounded, moderately well sorted, clean, mostly granitics and carbonates with shale; taking water, drills okay | . 19 | 82 -101
| | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | <pre>Clay, sandy, olive gray, moderately soft, moderately cohesive, chunky, slightly brittle to crumbly, tightly compacted (till)</pre> | 9 | 101 -110 | | Gravel, fine, sandy, moderately sorted, subangular, mostly carbonates and granitics | 3 | 110 -113 | | Clay, sandy with pebbles, olive gray, moderately
soft, cohesive, chunky, tight (till) | 17 | 113 -130 | | Boulder, white and black diorite, very hard | 2 | 130 -132 | | Sand, clayey and silty with pebbles, light olive
gray to olive gray, moderately soft, moderately
cohesive, slightly plastic, tightly compacted;
contains lenses of sand and gravel (till) | 22 | 132 -154 | | Sand, very fine to fine, clayey with pebbles, olive gray, moderately soft, slightly friable (till) | 12 | 154 -166 | | Clay, silty to very sandy with pebbles and sandy
gravel stringers, olive gray, moderately
soft, cohesive (till) | 20 | 166 -186 | | Clay, silty with sand grains and pebbles, dark olive gray, slightly hard, cohesive, tightly compacted, mostly brownish black recovered shale (till) | 35 | 186 -221 | | Silt and very fine sand, dark brownish gray to black, micaceous, noncalcareous, soft, friable, possible bentonitic layer; drills slow and tight, oily | 59 | 221 -280 | Location: 133-48-2BBC Use of well: Test hole Owner and number: SWC 3968 Principal aquifer: Depth drilled (ft.): 400 Altitude of land surface (ft., msl): 945 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 5/26/70 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Fill, clay | 4 | 0 - 4 | | Clay, silty with occasional sand grains and pebbles, yellowish gray, soft, smooth, cohesive, plastic, sticky, tight, oxidized (washed till) | 14 | 4 - 18 | | Clay, silty, light olive to olive gray, soft, cohesive, moderately plastic, siltier with depth | . 12 | 18 - 30 | | Gravel, fine, subrounded, carbonate and granitics | 2 | 30 - 32 | | Clay, silt, dark grayish green, moderately soft, moderately cohesive to slightly crumbly | 9 | 32 - 41 | | Silt, clayey to sandy, interbedded, gray, soft, slightly to moderately cohesive | 19 | 41 - 60 | | Clay, silt and sand (very fine), interbedded,
light gray to olive gray, moderately cohesive
to loose, soft, drills easy | 21 | 60 - 81 | | Sand, fine, varies from silty to medium-grained; sand, gray, loose but so uniform it drills like it is consolidated, generally subrounded, mostly quartz with some carbonates and shale with a little lignite, also shell and wood fragments; taking water | 22 | 81 -103 | | Clay, silty, olive gray, soft, cohesive, plastic, smooth, sticky | 5 | 103 -108 | | Sand, as above, very fine to fine, interbedded,
gray, quartzose with shale, little
carbonates and lignite | 26 | 108 -134 | | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Sand, fine and medium, moderately well sorted
and uniform, mostly subrounded, varies
from subangular to rounded, clean, shell
and wood fragments, taking water | 57 | 134 -191 | | Sand, fine, clayey with pebbles and sand with
fine gravel lenses, light olive gray,
chunky, cohesive but crumbles under
pressure, gritty (till) | 44 | 191 -235 | | Clay, sandy, as above, more clay with included blocks or layers of pure smooth clay and loose very fine sand; drills tight but easy, no large rocks (till) | . 52 | 235 -287 | | Clay, silty to sandy with pebbles, olive gray, chunky, slightly hard, cohesive, very tightly compacted (till) | 13 | 287 -300 | | Sand, fine, some very fine, some medium, gray, thinly interbedded but fairly uniform, mostly quartz with shale, some lignite chips | 30 | 300 -330 | | Clay, dark olive gray, moderately soft to slightly hard, cohesive to slightly brittle, smooth, very tight | 9 | 330 -339 | | Sand, fine and medium, well-sorted, subrounded, quartzose with shale and carbonates | 7 | 339 -346 | | Clay, olive gray, moderately soft, smooth, cohesive, plastic, tight, sticky | 3 | 346 -349 | | Clay, silty with sand grains and pebbles, dark
olive gray, brownish tint, slightly hard,
cohesive, very tightly compacted,
calcareous (till) | 16 | 349 -365 | | Shale, sandy, mostly clay with interbedded sand (quartz, angular to subangular) grains, green to dark green, moderately soft, moderately cohesive, waxy looking, noncalcareous except for calcareous shell fragments (Cretaceous Sediments) | 10 | 365 -375 | | Sand, coarse, white, all quartz, subangular to
subrounded, consolidated, noncalcareous
(Cretaceous sediments) | 10 | 375 -385 | | Shale, sandy, as above, green and white, soft, could be weathered granite (weathered Precambrian) | 9 | 385 -394 | | Shale, dark green, tight, smooth, waxy (weathered Precambrian) | 6 | 394 -400 | Location: 133-48-3ABB1 Use of well: Observation Owner and number: SWC 3969 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 400 Altitude of land surface (ft., msl): 944.8 (S) Screened interval (ft.): 98-118 Lithologic log from: SWC Casing diameter: 1.25" Comments: Destroyed; replaced by 3ABB2 in 1974 Date completed: 5/26/70 | Unit description | Thickness | (ft.) Dep | th (ft.) | |--|-----------|-----------|----------| | Roadfill, clay | 6 | 0 | - 6 | | Clay, yellowish gray to moderately olive
yellowish brown, soft to moderately soft,
cohesive, plastic, sticky, occasional sand
grains and pebbles, tight (weathered till) | 11 | 6 | - 17 | | Clay, silty with sand grains and pebbles, olive gray to dark olive gray, moderately soft to slightly hard, cohesive, tight; interbedded with clay, silt, sandy clay and fine sand, highly variable (till) | 24 | 17 | - 41 | | Clay, as above, also contains lenses of coarse sand and fine gravel (till) | 19 | 41 | - 60 | | Gravel, fine and medium, some coarse, some sand, generally subrounded but varies from subangular to rounded, appears clean but may have thin sandy clay streaks; taking lots of water, mixed mud, rough drilling. Mostly granitics (est. 40%), carbonates (est. 30%), indurated shale (est. 15%), est. 15% other igneous and metamorphic | 49 | 60 | -109 | | Sand, predominantly medium to coarse, varies from fine sand to fine gravel, about same composition as above, more quartz and granitics, fairly well-sorted and uniform, mostly subrounded, clean; taking water, mixed mud; lignite chips and a few wood fragments | . 87 | 109 | -196 | | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Sand, coarse with fine gravel, varies from medium sand to medium gravel, clean and uniform, subangular to subrounded, mostly granitics and carbonates | 86 | 196 -282 | | Sand, very fine to fine, light olive gray, clayey with pebbles, slightly hard, chunky, crumbles, tightly compacted, gritty (till) | 28 | 282 -310 | | Clay, silty with sand grains and pebbles, olive
gray to dark olive gray, moderately soft
to slightly hard, very cohesive, but
slightly brittle, very tightly compacted
(till) | 6 | 310 -316 | | Sand, medium, some coarse, very well-sorted and uniform, subangular and subrounded, mostly quartz with very little carbonates, lignite and shale, possibly reworked 'Dakota', drills like it may be consolidated mixed 10 bags of mud so far | 56 | 316 -372 | | Clay, yellowish-green to dark green, soft, crumbly, contains grains of quartz, noncalcareous, 'weathered granite' (Weathered Precambrian) | 13 | 372 -385 | | Clay, as above, with blocks or boulders of hard granite (Weathered Precambrian) | 15 | 385 -400 | Location: 133-48-3ABB2 Use of well: Observation Owner and number: SWC 9104 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 140 Altitude of land surface (ft., msl): 943.1 (S) Screened interval (ft.): 116-119 Lithologic log from: SWC Casing diameter: 1.25" Comments: Replaced 133-48-3ABB Date completed: 9/13/74 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil, clayey silty loam, black | 1 | 0 - 1 | | Clay, very silty, pale yellow brown, cohesive,
very plastic, sticky, oxidized | 5 | 1 - 6 | | Clay (as above), moderate yellow brown | 6 | 6 - 12 | | Clay, very silty, sandy, pebbly, dark gray, soft, plastic, cohesive, sticky, thin sand and gravel lenses (till) | 20 | 12 - 32 | | Clay, slightly silty, very sandy, pebbly, medium dark gray, moderately friable, dense, thin sand and gravel lenses, rock at 54' (till) |
35 | 32 - 67 | | Sand, medium to very coarse, medium gray, angular to subrounded, sorted, shaley lenses, 70% quartz 25% carbonates, 5% igneous, shell fragments, plus 5% fine gravel, composed of 80% carbonates, 15% igneous, 5% quartz, shale fragments | * | 67 -140 | Location: 133-48-11DDD Use of well: Test hole Owner and number: SWC 3958 Principal aquifer: Depth drilled (ft.): 240 Altitude of land surface (ft., msl): 950 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 5/21/70 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil, silty loam, black | 1 | 0 - 1 | | Clay, silty with occasional pebble and coarse
sediment, gray, yellowish brown, soft,
cohesive, moderately plastic, washed till? | 11 | 1 - 12 | | Clay, very sandy with coarse sand grains and pebbles, light olive gray to olive gray with bluish to greenish tint, moderately soft, slightly crumbly to slightly cohesive, tightly compacted, occasional lignite chips, numerous fine sandy lenses (till) | 37 | 12 - 49 | | Clay, silty with sand grains and pebbles, olive
gray to dark olive gray, moderately soft to
slightly hard, very cohesive, moderately
plastic, very tightly compacted, numerous
lenses of clay and silty clay (till) | 39 | 49 - 88 | | Sand, very fine, clayey to silty with coarse
sand grains and pebbles, light olive gray,
moderately soft to slightly hard, chunky,
slightly crumbly, very tightly compacted but
contains lenses of loose, very fine to fine
sand (till) | 73 | 88 -161 | | Clay, silty, dark gray, soft to moderately soft,
cohesive, smooth, tight | 10 | 161 -171 | | Silt, light olive gray, soft, crumbly, contains fine sand lenses | 13 | 171 -184 | | Shale, black, hard, smooth, tight, noncalcareous, contains lenses of bluish white bentonitic clay | 56 | 184 -240 | Location: 133-48-12BAA Use of well: Observation Owner and number: SWC 3966 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 235 Altitude of land surface (ft., msl): 949.2 (S) Screened interval (ft.): 115-135 Lithologic log from: SWC Casing diameter: 1.25" Comments: Date completed: 5/24/70 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil, silty loam, black | 1 | 0 - 1 | | Clay, silty, yellowish gray, soft, slightly cohesive to crumbly, oxidized | 5 | 1 - 6 | | Clay, silty with sand grains and pebbles,
medium olive brown, moderately soft,
cohesive, moderately plastic, oxidized
(till) | 9 | 6 - 15 | | Clay, silty to sandy with pebbles and numerous
lenses of clay and silt, olive gray,
moderately soft, cohesive, moderately
plastic (till) | 6 | 15 - 21 | | Silt, clayey to sandy, light olive gray to olive gray, soft to moderately soft, slightly to moderately cohesive, non- to slightly plastic, smooth, thinly interbedded, calcareous; occasional pebbles, possible till lenses | 25 | 21 - 46 | | Clay, very sandy with pebbles and numerous lenses of sand and fine to medium gravel, light olive gray, moderately soft, moderately cohesive, very slightly plastic, chunky, gritty (till) | 43 | 46 - 89 | | Unit description | Thickness (ft) | Depth (ft) | |--|----------------|------------| | Gravel, fine and some medium, moderately well-sorted, subangular to subrounded, loose, clean, mostly granitics and carbonates; taking water | 12 | 89 -101 | | Till, as above, very sandy with gravel stringers | 13 | 101 -114 | | Gravel, fine to medium, quite sandy, sorted in layers, no clay or silt, clean, subangular to rounded, mainly granitics and carbonates, taking water, mixed 4 bags of bentonite | 70 | 114 -184 | | Gravel, medium, varies from fine to coarse, some sand, fairly uniform, rough drilling | 38 | 184 -222 | | Gravel, coarse with cobblestones, rough drilling, mainly granitics | 9 | 222 -231 | | Shale, black, hard, smooth, tight, waxy, oily, carbonaceous, noncalcareous | 4 | 231 -235 | | Sandstone, dark gray, very fine grained, extremely hard | 0 | 235 -235 | Location: 133-48-13ADD Use of well: Test hole Owner and number: SWC 3961 Principal aquifer: Depth drilled (ft.): 240 Altitude of land surface (ft., msl): 955 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 5/22/70 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-----------------| | Topsoil, pebbly loam, black | 1 | 0 - 1 | | Clay, silty, yellowish, reddish and brownish gray, moderately soft to slightly hard, slightly plastic to slightly brittle, smooth, sticky, occasional coarse sand grain or pebble, oxidized (washed till) | 17 | 1 - 18 | | Clay, silt and very fine sand, interbedded,
loose to cohesive and plastic, variegated
grays with green and black, soft, drills
easy | 35 | 18 - 53 | | Clay, dark brownish gray, moderately soft, cohesive, slightly plastic to slightly crumbly, organic, oily, sand lenses | 23 | ₹ 53 776 | | Clay, silty to sandy with pebbles, olive gray to dark olive gray, slightly hard, cohesive, chunky, slightly crumbly under pressure, tightly compacted, includes blocks and chunks of clay and silt, also, some lenses of fine to medium sand (till) | 91 | 76 -167 | | Sand, fine and medium with some coarse, light olive gray, loose, moderately sorted, mostly quartz and granitic derivatives with shale and carbonates, taking water | 36 | 167 -203 | | Shale, silt and clayey very fine sand, interbedded, variegated grays with brown and black, organic, oily, noncalcareous, micaceous, speckled (fossils?); drills very tight, turns mud thick and oily, bentonitic | 37 | 203 -240 | Location: 133-48-24AAD1 Use of well: Observation Owner and number: SWC 9103 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 140 Altitude of land surface (ft., msl): 957.6 (S) Screened interval (ft.): 132-135 Lithologic log from: SWC Casing diameter: 1.25" Comments: North well Date completed: 9/12/74 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | <pre>Clay, silty, sandy, pebbly; moderate brown, iron stained, plastic, sticky to moderately soft, oxidized (till)</pre> | 16 | 0 - 16 | | <pre>Clay,very silty, sandy, pebbly; dark gray, plastic cohesive, soft to moderately dense, sand and gravel lenses (till)</pre> | 19 | 16 - 35 | | Sand, very fine, silty, clayey, brownish-gray, well sorted, dense, slightly friable | 11 | 35 - 46 | | Sand, very fine to moderate medium gray, 80% quartz, 20% carbonates, igneous | 6 | 46 - 52 | | Clay, very sandy, silty, pebbly; dark gray
to medium dark gray, slightly friable,
tight to moderately plastic, sand and
gravel lenses (till) | 28 | 52 - 80 | | Clay, as above, grayish black, dense, tight (till) | 29 | 80 -109 | | Clay, medium-dark-gray, slightly plastic, tight, sand and gravel lenses, clay lenses (till) | 20 | 109 -129 | | Gravel, very coarse sand, fine to medium, subangular to round, numerous silt and clay lenses, "dirty" | 6 | 129 -135 | | Clay, as above (till) | 5 | 135 -140 | Location: 133-48-24AAD2 Use of well: Observation Owner and number: SWC 9103a Principal aquifer: Wahpeton Shallow Sand Depth drilled (ft.): 60 Altitude of land surface (ft., msl): 956.9 (S) Screened interval (ft.): 48-51 Lithologic log from: SWC Casing diameter: 1.25" Comments: South well Date completed: 9/12/74 | Unit description | Thickness (ft.) | Depth (ft. | |--|-----------------|------------| | <pre>Clay, silty, sandy, pebbly; moderate brown, iron stained, plastic, sticky to moderately soft, oxidized (till)</pre> | 16 | 0 - 16 | | Clay, very silty, sandy, pebbly; dark gray, plastic, cohesive, soft to moderately dense, sand and gravel lenses (till) | 19 | 16 - 35 | | Sand, very fine, silty, clayey, brownish-gray, well sorted, dense, slightly friable | 17 | 35 - 52 | | Clay, very sandy, silty, pebbly, dark gray to moderately dark gray, slightly friable, tight to moderately plastic, sand and gravel lenses (till) | 8 | 52 - 60 | Location: 133-48-24ABB Use of well: Test hole Owner and number: SWC 3962 Principal aquifer: Depth drilled (ft.): 240 Altitude of land surface (ft., msl): 957 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 5/23/70 | Unit description | Thickness | (ft.) Depth (ft.) | |---|-----------|-------------------| | Topsoil, silty clay loam, black | 2 | 0 - 2 | | Clay, silty with occasional coarse sand grains and pebbles, reddish moderately olive brown, soft to slightly hard, cohesive, moderately plastic to slightly brittle, smooth, tight, oxidized
(till) | 18 | 2 - 20 | | Sand, very fine to fine, some medium, some silt, well sorted in layers, gray, mostly quartz with some shale, few carbonates, loose | 45 | 20 - 65 | | Clay, dark gray, slightly hard and brittle, smooth, slippery, tightly compacted, stiff | 9 | 65 - 74 | | Clay, silty to sandy with pebbles, olive gray to dark olive gray, moderately soft, chunky, cohesive, slightly to moderately plastic, tightly compacted (till) | 26 | 74 -100 | | Clay, olive gray to dark olive gray, laminated, smooth, medium soft, cohesive, plastic, sticky, tight, organic | 14 | 100 -114 | | Clay, silty to very sandy with pebbles and sand
lenses, tight olive to olive gray, moderately
soft, cohesive, slightly plastic, tight (till) | 52 | 114 -166 | | Till, as above, interbedded clay and silt layers | 40 | 166 -206 | | Silt and shale, generally brownish black but contains variegated grays, micaceous noncalcareous, tight, varies from soft to hard, oily, carbonaceous | 34 | 206 -240 | Location: 133-48-24ADA Use of well: Test hole Owner and number: SWC 3963 Principal aquifer: Depth drilled (ft.): 240 Altitude of land surface (ft., msl): 960 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 5/23/70 | Unit description | Thickness (ft. |) Depth (ft.) | |---|----------------|-------------------------------| | Topsoil, silty loam, black | 2 | 0 - 2 | | Clay, silty to sandy, very light gray to yellowish gray, soft, moderately cohesive, slightly plastic, leached (?), oxidized, occasional coarse sand grain or pebble | 8 | 2 - 10 | | Clay, silty with sand grains and pebbles, moderately olive brown, moderately soft to slightly hard, moderately cohesive to moderately brittle, very tightly compacted, oxidized (till) | 13 | 10 - 23 | | Silt and very fine to fine sand, clayey, grays and browns, very slightly cohesive to loose, quartzose, subrounded, interbedded, organic | 35 | 23 - 58 | | Clay, silty with sand grains, pebbles and occasional cobbles, olive gray to dark olive gray, slightly hard, chunky, very tightly compacted, organic or carbonaceous shale blocks (till) | 39 | ` 5 8 - '97 | | Clay, hard, dark brownish black, moderately hard, smooth, brittle, oily, tight | 5 | 97 -102 | | Sand, very fine, clayey, dark brown, soft, slightly cohesive, organic, oily, stains | 24 | 102 -126 | | Sand, coarse, well sorted, subangular to
subrounded, clean, mostly granitics,
with carbonates and shale, loose | 13 | 126 -139 | | Sand, very fine to fine, silty to clayey,
interbedded, moderately soft, chunky
and friable to loose, light olive gray | 38 | 139 -177 | | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Clay, dark greenish gray with a shade of olive
gray, shale, quartz, limestone, dolomite,
lignite; cohesive, grains vary greatly in
size; angular to rounded, mostly angular;
color changes to lighter (till) | 68 | 129 -197 | | Clay, silty, clayey; clive black, very few fragments, compact, hard, cohesive, pockets of white sand present; quartz predominant, slightly calcareous white sand not calcareous, grain size is predominantly ½ mm; becomes gravelly at about 282' | 120 | 197 -317 | | Weathered granite, cohesive, soft, contains
pyrite and gravel layers; light brownish
gray, plastic; quartz fragments;
noncalcareous (weathered Precambrian) | 9 | 317 -326 | Location: 134-48-17AAD Use of well: Test hole Owner and number: SWC 5670 Principal aquifer: Depth drilled (ft.): 302 Altitude of land surface (ft., msl): 935 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 11/20/79 | Unit description | Thickness | (ft.) Depth (ft.) | |---|-----------|-------------------| | Topsoil, black loam | 1 | 0 - 1 | | Clay, olive gray to 7 feet then yellowish brown, oxidized soft to well compacted, excellent cohesion, sticky. Few samples with gray partings (lacustrine) | 29 | 1 - 30 | | Clay, slightly sandy, slightly pebbly, poorly compacted, good cohesion, yellowish brown to olive gray, drilling with some chatter, few rocks and pebbles at 38 feet (till) | 18 | 30 - 48 | | <pre>Clay, very sandy, very silty, soft, poorly compacted, poor cohesion, drilling smooth, olive gray (till)</pre> | 12 | 48 - 60 | | Sand, ranging from a very fine sand to fine gravel, predominantly a medium sand, some clay, mostly quartz 60%, some shale, some lignite, some igneous and metamorphic fragments, mostly well rounded to subrounded, taking little water | 7 | 60 - 67 | | Sand, gravelly, ranging from a fine sand to medium gravel, predominantly a very coarse sand - fine gravel, mostly well rounded, predominantly carbonates and shale 70%, some silicates (quartz), olive gray, taking water, drilling rough | 6 | 67 - 73 | | Clay, slightly silty, moderately compacted, good cohesion, olive gray (fluvial) | 43 | 73 -116 | | Unit description | Thickness (ft) | Depth (ft) | |---|----------------|------------| | Clay, silty to sandy with pebbles, lenses of clay, silt, sand and fine gravel with occasional cobblestones and boulders, general olive gray color; fairly rough drilling (till) | 27 | 177 -204 | | Sand, coarse to very coarse, well-sorted,
subangular to rounded, mostly granitics
and carbonates, some shale, clean | 9 | 204 -213 | | Shale, black with white specks and streaks, hard, very tight, brittle, smooth, oily, carbonaceous, gaseous, sandstone at 237'; drills very tight | 27 | 213 -240 | Location: 134-48-9AAA Use of well: Test hole Owner and number: SWC 2309 Principal aquifer: Depth drilled (ft.): 326 Altitude of land surface (ft., msl): 935 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 9/15/64 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil, black | 2 | 0 - 2 | | Clay, dusky yellow, cohesive, soft; highly calcareous, patches of dark yellowish orange (iron stains), oxidized, plastic, oxidized lignite flakes and mica, occasionally silty (lake deposit) | 16 | 2 - 18 | | Clay, dark greenish gray to olive gray, unoxidized, otherwise exactly as above | 20 | 18 - 38 | | Clay, dark greenish gray to olive gray, silty, shale, dolomite, quartz, limestone, lignite, calcareous; cohesive, soft to hard; grain size varies greatly average mm (till) | 6 | 38 - 44 | | Sand, gravelly, fairly well to poorly sorted; predominant size ½ mm, ranges up to a gravel, quartz predominates, some shale, dolomite, limestone, lignite, angular to subangular | 15 | 44 - 59 | | Clay, olive black, silty, hard cohesive; shale, quartz, dolomite, limestone, highly calcareous, grain-size varies greatly; angular to rounded; occasionally laminated (till); changing to silt, olive gray to dark greenish gray, cohesive, fairly soft, fairly brittle; occasional pockets of fine white sand, highly calcareous, and is not calcareous | 70 | 59 -129 | | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Clay, silty, sandy, pebbly, "rocky", moderately compacted, poor to moderate cohesion, drilling with chatter, olive gray (till) | 84 | 116 -200 | | Sand, kelly dropped fast, no return of cuttings | 2 | 200 -202 | | Clay, same as above, somewhat less pebbly, more sandy, poorly compacted, poor cohesion, olive gray (till) | 75 ° | 202 -277 | | Sand, no cutting returns, drilled fast | 3 | 277 -280 | | Clay, same as above (till) | 22 | 280 -302 | Location: 134-48-20ADD2 Use of well: Observation Owner and number: SWC 5671 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 262 Altitude of land surface (ft., msl): 941.8 (S) Screened interval (ft.): 130-135 Lithologic log from: SWC Casing diameter: 5.00" Comments: 5" steel recording well Date completed: 11/20/79 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil | 1 | 0 - 1 | | Clay, soft, sticky, moderately to poorly compacted, very cohesive, yellowish brown to 10 feet then nonoxidized olive gray (lacustrine) | 21 | 1 - 22 | | Clay, very sandy, very silty, pebbly, some cobbles (bit chattering) olive gray, nonoxidized, few small (6") sand lenses. Sand 43-46 feet, poor return (till) | 24 | 22 - 46 | | Clay, silty, soft, moderately to poorly compacted, olive gray (fluvial deposit) | 9 | 46 - 55 | | Sand, ranging from a
very fine to coarse, predominantly a fine to medium poorly sorted, well rounded to subangular, mostly subrounded to angular. Drilling fast, taking water, abundant lignite and shale, abundant quartz, becomes somewhat cleaner with depth also coarser less lignite, olive gray | 35 | 55 - 90 | | Sand, ranging from a very fine to a coarse sand, predominantly a fine, well to moderately sorted, mostly quartz, about 60%, abundant lignite 20% abundant shale (well rounded), rest of material is subrounded to well rounded drilling smooth taking little water. Olive gray | 10 | 90 -100 | | Unit description T | hickness | (ft.) | Depth (| ft.) | |--|----------|-------|---------|------| | Sand, gravelly, ranging from a very fine sand to a medium gravel, predominantly a very coarse sand to fine gravel, moderately to poorly sorted, well rounded to very angular, mostly subrounded, abundant quartz, carbonates and shale, also igneous and metamorphic silicates, taking water, mud mixed, becomes little coarser with depth also little clay lenses at bottom | 38 | | 100 -1 | 38 | | Clay, soft, poorly compacted, moderately to poorly cohesive, yellowish brown to light olive gray (somewhat poor return of cuttings) also some cuttings appear to be dark brown possibly some organic material, drilling smooth, better cuttings with depth clay is slightly silty, very plastic cohesive, olive gray to dark olive gray (fluvial) | 18 | 2 | 138 -1 | 56 | | Sand, gravel, cobbles, drilled very hard, lots of chatter | 2 | | 156 -1 | 58 | | Clay, slightly sandy, few small pebbles, drilling slow, few cobbles and larger pebbles caving little, chatter, clay is soft poorly compacted, plastic, moderately cohesive, olive gray (till) | | | 158 -26 | 52 | Location: 134-48-21BBB Use of well: Observation Owner and number: SWC 3975 Principal aquifer: Wahpeton Buried Valley Depth drilled (ft.): 395 Altitude of land surface (ft., msl): 941 (T) Screened interval (ft.): 238-244 Lithologic log from: SWC Casing diameter: 1.25" Comments: Obs. well plugged, destroyed Date completed: 6/2/70 | Unit description | Thickness (ft. |) Depth (ft.) | |--|----------------|---------------| | Topsoil, clayey loam, black | 2 | 0 - 2 | | Clay, yellowish gray, soft to moderately soft, cohesive, moderately plastic, sticky, smooth, oxidized | 7 | 2 - 9 | | Clay, olive gray, soft, smooth, cohesive, plastic, sticky, tight, some silt | 29 | 9 - 38 | | Sand, fine and medium with streaks of coarse, interbedded, sorted in lenses, generally subrounded | 17 | 38 - 55 | | Clay, silty to sandy with pebbles, dark brownish gray, cohesive, chunky, tight (till) | 11 | 55 - 66 | | Sand, fine and medium with streaks of coarse sand
and fine gravel, sorted in lenses,
subangular to rounded, mostly quartz and
granitics with carbonates and shale; taking
some water | 65 | 66 -131 | | Clay, sandy, olive gray, moderately soft, cohesive, tightly compacted, shale pebbles (till) | 6 | 131 -137 | | Sand, fine to coarse, interbedded, granitics, carbonates and shale; drills easy, taking water, mixed 1 bag of mud; clean - no clay layers | 133 | 137 -270 | | Clay, very sandy with occasional pebbles, light olive gray, moderately soft, cohesive but crumbles under pressure, appears tightly compacted, gritty (till) | 44 | 270 -314 | | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Sand, fine and medium, gray, loose, moderately well sorted, subrounded, mostly quartz with carbonates and shale | 11. | 314 -325 | | <pre>Clay, as above, very sandy, gritty, light olive gray (till)</pre> | 57 | 325 -382 | | Clay, white to light greenish, soft, smooth except for occasional quartz grains, smears easily, noncalcareous (weathered Precambrian) | 13 | 382 -395 | | Granite, unaltered, extremely hard (Precambrian) | 0 | 395 -395 | Location: 134-48-32BAA Use of well: Test hole Owner and number: SWC 3971 Principal aquifer: Depth drilled (ft.): 350 Altitude of land surface (ft., msl): 940 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 5/27/70 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Topsoil, silty loam, black | 2 | 0 - 2 | | <pre>Silt, very light gray to yellowish gray, soft, non- to slightly cohesive, nonplastic (alluvium?)</pre> | 4 | 2 - 6 | | <pre>Clay, silty, yellowish gray, soft, cohesive, plastic, sticky, smooth, tight, laminated, oxidized</pre> | 17 | 6 - 23 | | Clay, silty and silt, clayey, olive gray, soft, smooth, cohesive, plastic, sticky, interbedded | 10 | 23 - 33 | | Clay, silty with sand grains and pebbles, olive
gray, moderately soft, cohesive, moderately
plastic, contains lenses of fine gravel in
upper part and tight, dark gray clay in
bottom part (till) | 17 | 33 - 50 | | Sand, medium with fine and some coarse, moderately well sorted, clean, subangular and subrounded mostly granitics and carbonates with some shale and occasional lignite chips, takes a little water, washes out easily | 12 | 50 - 62 | | Clay, silty with sand grains and pebbles, dark olive gray, slightly hard, cohesive, tightly compacted, gravelly in lower part (till) | 26 | 62 - 88 | | Gravel, fine, sandy, assorted, angular to subrounded, mostly carbonates and granitics | 7 | 88 - 95 | | Boulder, granite | 1 | 95 - 96 | | Sand, fine to medium, moderately well sorted and uniform, subrounded, mostly quartz and carbonates | 13 | 96 -109 . | | , a | Unit description | Thickness (ft.) | Depth (ft.) | |------|--|-----------------|----------------------| | | Clay, dark gray to dark brown, slightly hard and brittle, smooth, tight, organic, oily | 4 | 109 -113 | | 0 | Sand, medium, varies from fine to coarse, moderately sorted in layers, generally subrounded, mostly quartz, carbonates and shale, occasional wood, lignite or pyrite | 19 | 113 -132 | | Clay | Sand, very fine to fine, clayey with pebbles
and numerous lenses of fine sand to fine
gravel, light olive bluish gray,
moderately soft, very slightly plastic,
tightly compacted, gritty (till) | 70 | 132 -202 | | | Clay, silty with sand grains, pebbles and occasional cobbles, olive gray to dark olive gray, moderately soft to medium hard, tightly compacted, cohesive, slightly brittle, contains blocks or layers of clay and silt and occasionally sand or gravel, thinly interbedded (till) | 49 | 202 -251 | | 30 | Clay, silty with sand grains, yellowish,
greenish to grayish brown, moderately
soft, cohesive, slightly to moderately
plastic, oxidized (till) | 5 | 251 - 256 | | · | Clay, silty with sand grains, pebbles, a few cobbles, numerous blocks or layers of noncalcareous bedrock clays and silts, occasional streaks of sand or gravel and a boulder or two, general dark brownish gray or dark olive gray, sometimes nearly black. Contains lignite chips, granite pebbles, pyrite inclusions, oxidized clays, etc., very erratic tight drilling (till) | 39 | 256 -295 | | | Sand, medium to coarse, well sorted, uniform, subangular to rounded, white quartzose. Also contains a little shale, carbonates, lignite chips and pyrite inclusions possibly reworked 'Dakota Sandstone' but drills like it could be in place (Cretaceous sediments) | 31 | 295 -326 . | | | Clay, white, soft, moderately cohesive,
floury, noncalcareous, occasional block
of hard granite (weathered Precambrian) | 24 | 326 -350 | | | Granite, unaltered, extremely hard (Precambrian) | 0 | 350 -350 | Location: 134-48-32BBC Use of well: Test hole Owner and number: SWC 3972 Principal aquifer: Depth drilled (ft.): 150 Altitude of land surface (ft., msl): 940 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 5/22/70 | Unit description | Thickness | (ft.) | Depth (| ft.) | |---|-----------|-------|---------|------| | Topsoil, silty loam, black | 2 | | 0 - 2 | | | Clay, silty, yellowish gray, soft, smooth, cohesive, sticky, tight, occasional sand grain, oxidized | 18 | | 2 - 20 | | | Clay, silty, olive gray, soft, smooth, cohesive, sticky | 15 | | 20 - 35 | WI | | Clay, silty to sandy with pebbles, olive gray to
dark olive gray, slightly hard and brittle,
cohesive, tight, includes layers or blocks
of pure clay (till) | 7 | | 35 - 42 | 78 | | Gravel, fine to coarse with some sand and cobbles, assorted but may be stratified in uniform layers,
generally subrounded but varies from subangular to rounded, mostly carbonates and granitics, little indurated shale, taking lots of water, mixed 3 bags of drilling mud and 2 bags of cement. Rough drilling, had to use rock bit. | 38 | | 42 - 80 | | | Sand, very fine to fine, clayey with pebbles, light olive gray, moderately soft, crumbly, stiff, fairly tight, contains numerous lenses of fine to medium sand up to 8 or 9 feet thick (till) | 47 | * • | 80 -127 | | | <pre>Clay, very sandy, as above, no sand or gravel lenses (till)</pre> | 23 | 1 | 27 -150 | | Location: 134-48-32DAA Use of well: Observation Owner and number: SWC 3970 Principal aquifer: Wahpeton Sand Plain Depth drilled (ft.): 120 Altitude of land surface (ft., msl): 943.1 (S) Screened interval (ft.): 58-78 Lithologic log from: SWC Casing diameter: 1.25" Comments: Date completed: 5/26/70 | Unit description | Thickness (ft.) | Depth (ft.) | |---|-----------------|-------------| | Topsoil, silty clay loam, black | 1 | 0 - 1 | | Clay, silty, yellowish gray, soft, cohesive, plastic, sticky, tight, smooth, oxidized, occasional sand grain | 13 | 1 - 14 | | Clay, silty, olive gray, soft, cohesive, plastic | 12 | 14 - 26 | | Clay, silty to sandy with pebbles, olive gray,
moderately soft, cohesive, slightly plastic,
thin gravelly stringers (till) | 9 | 26 - 35 | | Sand, medium to very coarse with fine gravel,
subangular and subrounded, mostly granitics
with carbonates, taking lots of water | 45 | 35 - 80 | | Gravel, fine to coarse, slightly sandy, interbedded, generally subrounded, mainly granitics, carbonates and indurated shale; taking lots of water, mixed 8 bags of mud. Got down to 120' but twisted off drill stem while trying to ream out hole, used 2200 gallons of water | 40 | 80 -120 | Location: 134-48-33AAA Use of well: Test hole Owner and number: SWC 3974 Principal aquifer: Depth drilled (ft.): 280 Altitude of land surface (ft., msl): 946 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 5/28/70 | Unit description | Thickness (ft.) | Depth (ft.) | |--|-----------------|-------------| | Fill, clay | 4 | 0 - 4 | | Clay, silty, yellowish gray, soft, smooth, cohesive, plastic, sticky, oxidized | 12 | 4 - 16 | | Clay, silty, olive gray, soft, smooth, cohesive, plastic, sticky | 12 | 16 - 28 | | Clay, silty with sand grains and pebbles,
olive gray to dark olive gray, moderately
soft to slightly hard, brittle, chunky,
tight, blocks of organic clay (till) | 13 | 28 - 41 | | Sand, very fine and fine gradually becoming coarser with depth, fine gravel from 260 to 280, gray gradually becoming buff colored, generally subrounded, well sorted and uniform, mostly quartz and granitic derivatives with carbonates, some shale, occasional lignite chips and wood fragments, loose, taking lots of water. Had run out of bentonite so hole had a tendency to cave, got rods stuck twice, abandoned hole at 280 because of the head and no way to keep it down. | 239 | 41 -280 | Location: 134-48-33BAB Use of well: Test hole Owner and number: SWC 3973 Principal aquifer: Depth drilled (ft.): 200 Altitude of land surface (ft., msl): 946 (T) Screened interval (ft.): None Lithologic log from: SWC Casing diameter: None Comments: Date completed: 5/27/70 | Unit description | Th | ickness (ft.) | Depth (ft.) | |--|---|---------------|-------------| | Topsoil, silty clay loam, black | | 2 | 0 - 2 | | Clay, silty, yellowish gray, soft soft, cohesive, plastic, smotight, oxidized | to moderately oth, sticky, | 12 | 2 - 14 | | Clay, silty, olive gray, soft, sm
plastic, sticky, tight | ooth, cohesive, | 21 | 14 - 35 | | Clay, silty to sandy with pebbles
chunky, brittle, olive gray
gray, very tight, contains l
of smooth dark clay (till) | to dark olive | 7 | 35 - 42 | | Clay, very sandy (very fine), ver
slightly cohesive, interbedd
sand, organic | y dark brown, soft,
ed with silt and | 11 | 42 - 53 | | Sand, fine to medium, gray, moder
and uniform, generally subro
quartz and shale, some carbo
lignite, loose, clean | unded, mostly | 19 | 53 - 72 | | Clay, silty with sand grains and gray to brownish gray, sligh hard, brittle, tightly compa layers or blocks of organic silt, tight (till) | tly to moderately cted, contains | 38 | 72 -110 | | Sand, very fine to fine, clayey we light olive gray, moderately or friable, fairly porous, graymumerous lenses of fine and reloose sand (till) | soft, crumbly citty, contains | 90 1 | 10 -200 | TABLE II. Table of Water Levels in Observation Wells and Piezometers | Dakota Group Aquifer | | | | LS Elev (msl,ft)=955.2
SI (ft.)=318-324 | | | |----------------------|--------------|------------------|----------------------|--|------------------|--| | | Depth to | WL Elev | | Depth to | WL Elev | | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | 06/09/71 | 0.59 | 954.61 | 06/22/78 | 10.81 | 944.39 | | | 07/20/71 | 0.60 | 954.60 | 09/21/78 | 11.30 | 943.90 | | | | | | 12/06/78 | 11.84 | 943.36 | | | 08/28/73 | 1.00 | 954.20 | | | | | | 09/20/73 | 1.21 | 953.99 | 07/19/79 | 17.01 | 938.19 | | | | | | 11/30/79 | 15.72 | 939.48 | | | 06/19/74 | 1.09 | 954.11 | | | | | | 07/18/74 | 1.67 | 953.53 | 09/17/80 | 16.64 | 938.56 | | | 07/29/74 | 2.66 | 952.54 | 11/18/80 | 17.86 | 937.34 | | | 08/01/74 | 2.90 | 952.30 | 10 (04 (04 | 40.05 | | | | 08/05/74 | 3.23 | 951.97 | 12/01/81 | 19.25 | 935.95 | | | 08/09/74 | 1.99 | 953.21 | . 00/04/02 | 22.06 | 000 44 | | | 08/14/74 | 3.40 | 951.80 | 08/24/83 | 22.06 | 933.14 | | | 08/20/74 | 3.34
3.57 | 951.86 | 11/29/83 | 19.95 | 935.25 | | | 08/27/74 | | 951.63 | 11 /20 /0/ | 00 60 | 004 54 | | | 09/05/74
09/14/74 | 3.54
3.52 | 951.66
951.68 | 11/29/84 | 23.69 | 931.51 | | | 09/14/74 | 3.64 | 951.58 | 00/35/05 | 22.46 | 001 74 | | | | 3.49 | | 09/25/85 | 23.46 | 931.74 | | | 09/24/74
10/03/74 | 3.49 | 951.71
951.67 | 10/03/85 | 23.38 | 931.82 | | | 10/03/74 | 3.51 | 951.69 | 10/09/85 | 23.53 | 931.67 | | | 10/05/74 | 3.61 | 951.59 | 10/15/85
10/23/85 | 23.41
23.21 | 931.79 | | | 10/03/74 | 3.72 | 951.48 | 12/04/85 | 23.21 | 931.99
931.73 | | | 10/16/74 | 3.96 | 951.24 | 12/04/65 | 23.4/ | 931./3 | | | 10/22/74 | 4.58 | 950.62 | 07/16/86 | 23.17 | 932.03 | | | 10/23/74 | 4.65 | 950.55 | 10/28/86 | 23.37 | 931.83 | | | 10/30/74 | 4.98 | 950.22 | 11/04/86 | 23.57 | 931.63 | | | 11/06/74 | 5.26 | 949.94 | 11/25/86 | 24.37 | 930.83 | | | 11/18/74 | 5.57 | 949.63 | 12/01/86 | 24.35 | 930.85 | | | 12/03/74 | 6.08 | 949.12 | 12/01/00 | 24.55 | ,,,,,, | | | | | | 01/07/87 | 25.34 | 929.86 | | | 01/22/75 | 7.34 | 947.86 | 01/28/87 | 25.69 | 929.51 | | | 02/25/75 | 7.46 | 947.74 | 03/03/87 | 26.40 | 928.80 | | | 06/03/75 | 7.18 | 948.02 | 03/24/87 | 26.62 | 928.58 | | | 07/15/75 | 6.38 | 948.82 | 05/13/87 | 26.59 | 928.61 | | | 07/29/75 | 6.39 | 948.81 | 07/02/87 | 26.87 | 928.33 | | | 08/25/75 | 6.92 | 948.28 | 08/03/87 | 27.03 | 928.17 | | | 09/07/75 | 7.02 | 948.18 | 08/31/87 | 27.32 | 927.88 | | | 12/02/75 | 6.49 | 948.71 | 10/02/87 | 27.28 | 927.92 | | | | | | 11/02/87 | 26.91 | 928.29 | | | 01/21/76 | 6.81 | 948.39 | 11/25/87 | 27.21 | 927.99 | | | 04/14/76 | 5.49 | 949.71 | 11/30/87 | 26.73 | 928.47 | | | 06/02/76 | 5.84 | 949.36 | | | | | | 06/17/76 | 6.02 | 949.18 | 04/22/88 | 25.91 | 929.29 | | | 06/30/76 | 6.56 | 948.64 | 06/23/88 | 26.70 | 928.50 | | | 07/21/76 | 7.22 | 947.98 | 07/01/88 | 26.91 | 928.29 | | | 08/11/76 | 8.12 | 947.08 | 07/27/88 | 27.30 | 927.90 | | | 08/24/76 | 8.69 | 946.51 | 08/23/88 | 27.52 | 927.68 | | | 09/13/76 | 9.53 | 945.67 | 10/27/88 | 27.40 | 927.80 | | | 09/28/76 | 9.84 | 945.36 | | | | | | 11/02/76 | 10.70 | 944.50 | 04/19/89 | 26.59 | 928.61 | | | 12/06/76 | 10.95 | 944.25 | 05/16/89 | 26.59 | 928.61 | | | | | | 06/20/89 | 26.88 | 928.32 | | | 01/04/77 | 11.40 | 943.80 | 07/18/89 | 27.65 | 927.55 | | | 04/04/77 | 11.32 | 943.88 | 08/15/89 | 28.35 | 926.85 | | | 06/07/77 | 12.22 | 942.98 | 10/05/89 | 28.34 | 926.86 | | | 07/07/77 | 11.55 | 943.65 | 10/24/89 | 28.08 | 927.12 | | | 08/10/77 | 11.74 | 943.46 | 12/01/89 | 27.83 | 927.37 | | | 09/15/77 | 11.49 | 943.71 | | | | | | | | | 01/03/90 | 27.51 | 927.69 | | | 133-047-07ADD | | (Continued) | | LS Elev (ms | l,ft)=955.2 | |--------------------------------|---------------
--|-----------------|-------------|---------------------------| | Dakota Gr | oup Aguifer | | | SI (f | (.) = 318 - 324 | | | Depth to | WL Elev | | Depth to | WL Elev | | | Water (ft) | OF DARK THE VEHICLE AND DESCRIPTION OF THE PERSON P | | Water (ft) | E-102000 700 W 700 100 10 | | | | 928.12 | | 27.01 | | | 04/23/90 | 26.78 | 928.42 | 06/13/90 | 27.09 | 928.11 | | | | | | | to the ten the same that | | 133-047-16CDB | | | | LS Elev (ms | 12 (2) | | Wahpeton Buried Valley Aguifer | | Aquifer | SI (ft.)=149-15 | | | | | Depth to | WL Elev | | Depth to | WL Elev | | | Water (ft) | (msl, ft) | | Water (ft) | | | | 6.92 | | | | | | 133-047-1 | L7ADD | | | LS Elev (ms | L,ft)=957.3 | | Wahpeton | Buried Valley | Aquifer | | SI (f | -1=149-155 | | | Depth to | WL Elev | | Depth to | WL Elev | | | Water (ft) | | | Water (ft) | | | | 5.26 | | | 6.84 | | | Wahpeton Sand Plain Aguifer | | SI (ft.)=118-121 | | | | |------------------------------------|--------------------|--|--|------------------|-----------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 06/09/71 | 2.99 | 956.23 | 12/06/76 | 35.10 | 924.12 | | 07/20/71 | 2.66 | 956.56 | | | | | 08/30/71 | 2.78 | 956.44 | 01/04/77 | 34.89 | 924.33 | | | | | 04/04/77 | 26.60 | 932.62 | | 01/31/72 | 2.12 | 957.10 | 06/07/77 | 26.48 | 932.74 | | | | | 07/07/77 | 24.98 | 934.24 | | 06/26/73 | 3.18 | 956.04 | 08/10/77 | 25.73 | 933.49 | | 08/28/73 | 8.39 | 950.83 | 09/15/77 | 24.33 | | | 09/20/73 | 4.75 | 954.47 | | 23.04 | 934.89 | | 12/18/73 | 3.99 | 955.23 | 12/12/77 | 23.04 | 936.18 | | | III. | | 03/14/78 | 22.16 | 937.06 | | 06/17/74 | 3.70 | 955.52 | 06/22/78 | 25.98 | 933.24 | | 06/19/74 | 3.69 | 955.53 | 09/21/78 | 23.67 | 935.55 | | 07/18/74 | 28.83 | 930.39 | 12/06/78 | 26.67 | 932.55 | | 07/29/74 | 37.33 | 921.89 | 12,00,70 | 20.07 | 752.55 | | 08/01/74 | 37.33 | 921.89 | 06/21/79 | 32.42 | 926.80 | | 08/05/74 | 35.67 | 923.55 | 100 miles | 36.33 | | | 08/03/74 | 24.63 | The state of s | 09/20/79 | | 922.89 | | | | 934.59 | 11/30/79 | 31.03 | 928.19 | | 08/14/74 | 18.69 | 940.53 | A CONTRACTOR OF THE | 000 000 1000 100 | | | 08/20/74 | 15.92 | 943.30 | 03/20/80 | 30.84 | 928.38 | | 08/27/74 | 14.16 | 945.06 | 06/18/80 | 35.09 | 924.13 | | 09/05/74 | 12.36 | 946.86 | 09/10/80 | 39.13 | 920.09 | | 09/13/74 | 11.23 | 947.99 | 09/17/80 | 37.20 | 922.02 | | 09/14/74 | 11.40 | 947.82 | 11/18/80 | 34.46 | 924.76 | | 09/17/74 | 11.38 | 947.84 | 8 | | | | 09/24/74 | 10.07 | 949.15 | 06/11/81 | 35.36 | 923.86 | | 10/03/74 | 11.85 | 947.37 | 09/03/81 | 53.94 | 905.28 | | 10/04/74 | 11.92 | 947.30 | 10/08/81 | 39.40 | 919.82 | | 10/05/74 | 17.53 | 941.69 | 12/01/81 | 36.75 | 922.47 | | 10/09/74 | 23.09 | 936.13 | 12/01/81 | 30.73 | 322.41 | | 10/16/74 | 34.47 | 924.75 | 07/07/82 | 20 44 | 010 70 | | 10/10/74 | 38.70 | 920.52 | 120 DE 180 18 | 39.44 | 919.78 | | 10/22/74 | 39.30 | | 10/04/82 | 53.45 | 905.77 | | NOTE OF STREET OF STREET OF STREET | 35.35 | 919.92 | 11/30/82 | 38.04 | 921.18 | | 10/30/74 | | 923.87 | 20124105 | | | | 11/06/74 | 37.48 | 921.74 | 08/24/83 | 43.27 | 915.95 | | 11/18/74 | 30.00 | 929.22 | 11/29/83 | 38.90 | 920.32 | | 12/03/74 | 30.12 | 929.10 | 04/04/84 | 41.73 | 017 40 | | 01/22/75 | 37.82 | 921.40 | 06/14/84 | 41.75 | 917.49 | | | 1200000 (20000000) | | | | 917.67 | | 02/25/75
06/03/75 | 29.02 | 930.20 | 08/30/84 | 45.75 | 913.47 | | | 13.01 | 946.21 | 11/29/84 | 40.36 | 918.86 | | 06/18/75 | 10.90 | 948.32 | | | | | 07/15/75 | 7.73 | 951.49 | 02/28/85 | 43.70 | 915.52 | | 07/29/75 | 20.51 | 938.71 | 06/26/85 | 42.89 | 916.33 | | 08/25/75 | 26.99 | 932.23 | 09/11/85 | 42.94 | 916.28 | | 09/07/75 | 15.38 | 943.84 | 09/25/85 | 42.10 | 917.12 | | 12/02/75 | 32.55 | 926.67 | 10/03/85 | 42.15 | 917.07 | | | | | 10/09/85 | 41.90 | 917.32 | |
01/21/76 | 20.19 | 939.03 | 10/15/85 | 42.08 | 917.14 | | 01/22/76 | 13.28 | 945.94 | 10/23/85 | 41.75 | 917.47 | | 04/09/76 | 8.67 | 950.55 | 10/24/85 | 41.41 | 917.81 | | 06/02/76 | 19.40 | 939.82 | 11/01/85 | 41.53 | 917.69 | | 06/02/76 | 20.23 | 938.99 | 12/04/85 | | | | 06/17/76 | 19.90 | 939.32 | 12/04/85 | 41.87 | 917.35 | | | | | 04/10/06 | 44.45 | 015 05 | | 07/21/76 | 24.15 | 935.07 | 04/12/86 | 44.17 | 915.05 | | 08/11/76 | 35.68 | 923.54 | 05/23/86 | 40.78 | 918.44 | | 08/24/76 | 36.68 | 922.54 | 07/16/86 | 41.22 | 918.00 | | 09/13/76 | 33.70 | 925.52 | 09/04/86 | 54.68 | 904.54 | | 09/28/76 | 32.88 | 926.34 | 10/28/86 | 42.12 | 917.10 | | 11/02/76 | 27.36 | 931.86 | 11/04/86 | 54.42 | 904.80 | | | | | | | | | 133-047-1 | L7CCC1 | (Continued) | | LS Elev (msl | ft)=959.22 | |-----------|---------------|-------------|----------|--------------|-----------------| | Wahpeton | Sand Plain Ac | uifer | | SI (f | t.) = 118 - 121 | | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 11/25/86 | 58.10 | 901.12 | 06/23/88 | 53.12 | 906.10 | | 12/01/86 | 61.28 | 897.94 | 06/30/88 | 53.18 | 906.04 | | | | | 07/27/88 | 51.48 | 907.74 | | 01/07/87 | 59.94 | 899.28 | 08/23/88 | 52.12 | 907.10 | | 01/28/87 | 60.71 | 898.51 | 09/30/88 | 48.78 | 910.44 | | 03/03/87 | 61.97 | 897.25 | 10/27/88 | 49.92 | 909.30 | | 03/24/87 | 65.67 | 893.55 | 11/30/88 | 48.45 | 910.77 | | 05/13/87 | 51.98 | 907.24 | | | | | 05/14/87 | 51.43 | 907.79 | 01/04/89 | 48.82 | 910.40 | | 07/02/87 | 54.18 | 905.04 | 02/15/89 | 46.74 | 912.48 | | 07/03/87 | 54.08 | 905.14 | 03/15/89 | 47.19 | 912.03 | | 07/10/87 | 54.72 | 904.50 | 04/19/89 | 46.33 | 912.89 | | 08/03/87 | 49.37 | 909.85 | 05/16/89 | 56.95 | 902.27 | | 08/08/87 | 49.37 | 909.85 | 06/20/89 | 54.70 | 904.52 | | 08/31/87 | 49.70 | 909.52 | 07/19/89 | 55.82 | 903.40 | | 09/17/87 | 48.41 | 910.81 | 08/15/89 | 53.63 | 905.59 | | 10/02/87 | 49.60 | 909.62 | 10/05/89 | 51.48 | 907.74 | | 10/12/87 | 49.73 | 909.49 | 10/24/89 | 49.52 | 909.70 | | 10/20/87 | 48.47 | 910.75 | 12/01/89 | 46.52 | 912.70 | | 11/02/87 | 47.82 | 911.40 | | | | | 11/17/87 | 46.80 | 912.42 | 01/03/90 | 46.12 | 913.10 | | 11/25/87 | 46.48 | 912.74 | 03/30/90 | 45.70 | 913.52 | | 11/30/87 | 48.16 | 911.06 | 04/23/90 | 47.28 | 911.94 | | | | | 05/21/90 | 46.98 | 912.24 | | 02/12/88 | 45.87 | 913.35 | 06/13/90 | 53.16 | 906.06 | | 04/22/88 | 46.58 | 912.64 | | | | | | Aguifer Depth to | WL Elev | | | (ft.)=48-51 | |---------------------|---------------------|----------------------|----------------------|------------------------|-------------------| | Date | Depth to Water (ft) | WL Elev
(msl, ft) | Date | Depth to
Water (ft) | WL Elev (msl, ft) | |
09/18/74 | 13.13 | 945.85 | 06/11/81 | 32.37 | 926.61 | | 09/24/74 | 8.22 | 950.76 | 09/03/81 | 40.54 | 918.44 | | 10/03/74 | 10.85 | 948.13 | 10/08/81 | 34.18 | | | 10/04/74 | 10.87 | 948.11 | 12/01/81 | | 924.80 | | 10/05/74 | 10.90 | 948.08 | 12/01/81 | 32.26 | 926.72 | | 10/03/74 | 13.40 | | 05/05/05 | | 212 21 212 | | | | 945.58 | 07/07/82 | 35.42 | 923.56 | | 10/16/74 | 18.53 | 940.45 | 10/04/82 | 45.10 | 913.88 | | 10/22/74 | 23.11 | 935.87 | 11/30/82 | 34.20 | 924.78 | | 10/23/74 | 23.81 | 935.17 | | | | | 10/30/74 | 26.42 | 932.56 | 03/10/83 | 33.59 | 925.39 | | 11/06/74 | 26.60 | 932.38 | 06/15/83 | 36.86 | 922.12 | | 11/18/74 | 24.75 | 934.23 | 08/24/83 | 37.38 | 921.60 | | 12/03/74 | 24.65 | 934.33 | 11/29/83 | 36.05 | 922.93 | | 01/22/75 | 28.36 | 930.62 | 04/04/84 | 36.50 | 922.48 | | 02/25/75 | 24.06 | 934.92 | 06/14/84 | 36.61 | 922.37 | | 06/03/75 | 13.04 | 945.94 | 08/30/84 | 38.49 | 920.49 | | 6/18/75 | 11.58 | 947.40 | 11/29/84 | 36.78 | 922.20 | | 7/15/75 | 9.22 | 949.76 | ,, | 20.70 | 2 . L . L U | | 7/28/75 | 12.71 | 946.27 | 02/28/85 | 36.30 | 922.68 | | 8/25/75 | 23.08 | 935.90 | 06/26/85 | 36.55 | 922.43 | | 9/07/75 | 16.77 | 942.21 | 09/11/85 | 38.60 | | | .2/02/75 | 19.34 | 939.64 | | | 920.38 | | .2/02/13 | 17.34 | 939.04 | 09/25/85 | 37.69 | 921.29 | | 1100/76 | F 00 | 052.00 | 10/03/85 | 37.46 | 921.52 | | 4/09/76 | 5.08 | 953.90 | 10/09/85 | 37.33 | 921.65 | | 6/02/76 | 13.33 | 945.65 | 10/15/85 | 37.24 | 921.74 | | 6/17/76 | 14.70 | 944.28 | 10/23/85 | 37.00 | 921.98 | | 6/30/76 | 16.02 | 942.96 | 10/24/85 | 37.00 | 921.98 | | 7/21/76 | 17.60 | 941.38 | 11/01/85 | 37.14 | 921.84 | | 8/11/76 | 23.65 | 935.33 | 12/04/85 | 36.37 | 922.61 | | 8/24/76 | 25.92 | 933.06 | | | | | 9/13/76 | 26.18 | 932.80 | 04/12/86 | 37.90 | 921.08 | | 9/28/76 | 26.39 | 932.59 | 05/23/86 | 36.40 | 922.58 | | 1/02/76 | 25.24 | 933.74 | 09/04/86 | 43.05 | 915.93 | | 2/06/76 | 25.60 | 933.38 | 10/28/86 | 36.90 | 922.08 | | | | | 11/04/86 | 40.13 | 918.85 | | 1/04/77 | 27.14 | 931.84 | 11/25/86 | 46.44 | 912.54 | | 4/04/77 | 22.23 | 936.75 | 12/01/86 | 46.71 | | | 6/07/77 | 23.12 | 935.86 | 12/01/60 | 40.71 | 912.27 | | 7/07/77 | 22.21 | | 01 /07 /07 | 40.70 | 010 10 | | | | 936.77 | 01/07/87 | 48.79 | 910.19 | | 8/10/77 | 21.96 | 937.02 | 05/13/87 | 44.19 | 914.79 | | 9/15/77 | 21.16 | 937.82 | 05/14/87 | 44.39 | 914.59 | | 2/12/77 | 19.80 | 939.18 | 07/02/87 | 45.53 | 913.45 | | | | | 07/03/87 | 45.58 | 913.40 | | 3/14/78 | 18.55 | 940.43 | 07/10/87 | 45.47 | 913.51 | | 6/22/78 | 19.74 | 939.24 | 08/03/87 | 43.50 | 915.48 | | 9/21/78 | 20.27 | 938.71 | 08/31/87 | 43.67 | 915.31 | | 2/06/78 | 22.45 | 936.53 | 09/17/87 | 43.29 | 915.69 | | | | | 10/02/87 | 42.74 | 916.24 | | 6/21/79 | 27.00 | 931.98 | 10/12/87 | 42.45 | 916.53 | | 7/17/79 | 29.69 | 929.29 | 10/20/87 | 42.23 | 916.75 | | 9/20/79 | 29.65 | 929.33 | 11/02/87 | 41.72 | 917.26 | | 1/30/79 | 26.72 | 932.26 | 11/17/87 | 41.72 | | | _, _0, , , | AU . 1 Z | JJ2.2V | | | 917.55 | | 3/20/80 | 27.19 | 931.79 | 11/25/87 | 41.89 | 917.09 | | | | | 11/30/87 | 41.12 | 917.86 | | 6/18/80 | 31.00 | 927.98 | 00 14 0 10 - | | | | 9/10/80 | 31.42 | 927.56 | 02/12/88 | 40.59 | 918.39 | | 9/17/80 | 33.13 | 925.85 | 04/22/88 | 41.12 | 917.86 | | | | | | | | | 1/18/80 | 30.27 | 928.71 | 06/23/88
06/30/88 | 45.14 | 913.84 | | 133-047-17CCC2 (Continued) Undefined Aguifer | | | | LS Elev (msl, | ft)=958.98
(ft.)=48-51 | |---|---------------|-----------|----------|---------------|---------------------------| | | | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | | | | | | | 07/27/88 | 45.39 | 913.59 | 07/19/89 | 47.22 | 911.76 | | 08/23/88 | 44.44 | 914.54 | 08/15/89 | 47.42 | 911.56 | | 09/30/88 | 43.84 | 915.14 | 10/05/89 | 43.85 | 915.13 | | 10/27/88 | 42.75 | 916.23 | 10/24/89 | | 916.24 | | 11/30/88 | 41.69 | 917.29 | 12/01/89 | 41.91 | 917.07 | | 01/04/00 | 41.12 | 917.86 | 01/03/90 | 41.57 | 917.41 | | 01/04/89
02/15/89 | 41.12 | 917.24 | 03/29/90 | 41.55 | 917.41 | | BO TO SELECTION OF THE PERSON | 41.40 | 917.58 | 04/23/90 | 41.64 | 917.34 | | 03/15/89 | | | • | 42.67 | 916.31 | | 04/19/89 | 41.61 | 917.37 | 05/21/90 | 43.05 | 915.93 | | 05/16/89 | 43.40 | 915.58 | 06/13/90 | 43.05 | 313.33 | | 06/20/89 | 43.83 | 915.15 | | | | | 133-047-1 | 7DDD | | | LS Elev (n | nsl,ft)=964 | | Wahpeton : | Shallow Sand | Aquifer | 2 | SI | (ft.)=60-80 | | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | | | | | | | | | | 07/20/71 | 21.08 | 942.92 | | | | | 08/30/71 | 21.55 | 942.45 | 12/18/73 | 22.05 | 941.95 | | | | | , | | | | 133-047-1 | .8ABC | | | LS Elev (r | nsl,ft)=958 | | Wahpeton | Buried Vallev | Aguifer | | SI (ft | :.}=145-235 | | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 09/19/74 | 9.96 | 948.04 | 10/23/74 | 27.42 | 930.58 | | 09/19/74 | 9.08 | 948.92 | 10/30/74 | 26.02 | 931.98 | | 10/03/74 | 9.74 | 948.26 | 11/06/74 | 26.95 | 931.05 | | 10/03/74 | 9.81 | 948.19 | 11/18/74 | | 934.07 | | 10/04/74 | 11.97 | 946.19 | 12/03/74 | 23.78 | 934.22 | | 10/05/74
| 16.39 | 941.61 | 12/03/14 | 23.70 | 734.44 | | 10/09/74 | 23.99 | 934.01 | 06/03/75 | 12.87 | 945.13 | | 10/16/74 | | 930.96 | 00,03/73 | 12.07 | 343·T3 | | 10/22/14 | 27.04 | 730.70 | 40 | | | | | Depth to | WL Elev | | Donth +- | Mr ma | |--|----------------|--|----------------------|------------------------|----------------------| | Date | Water (ft) | (msl, ft) | Date | Depth to
Water (ft) | WL Elev
(msl, ft) | | 11/18/69 | 4.73 | 955.39 | 04/04/77 | 25.79 | 934.33 | | 00/06/70 | 4 22 | 000 | 08/10/77 | 24.51 | 935.61 | | 02/26/70 | 4.32 | 955.80 | 09/15/77 | 24.59 | 935.53 | | 06/09/71 | 5.76 | 954.36 | 06/22/78 | 23.53 | 936.59 | | 07/20/71 | 5.36 | 954.76 | 09/21/78 | 22.62 | 937.50 | | 08/30/71 | 5.59 | 954.53 | 05.440.400 | | | | 01/31/72 | 4.90 | 955.22 | 06/18/80
07/23/80 | 32.33
34.52 | 927.79
925.60 | | 01/31/12 | 4.50 | 755.22 | 09/10/80 | 35.43 | 924.69 | | 06/26/73 | 5.81 | 954.31 | | | 221102 | | 08/28/73 | 8.89 | 951.23 | 06/11/81 | 34.66 | 925.46 | | 09/20/73 | 7.34 | 952.78 | 09/03/81 | 45.40 | 914.72 | | 12/18/73 | 6.61 | 953.51 | 10/08/81 | 36.60 | 923.52 | | 06/19/74 | 6.20 | 953.92 | 11/30/82 | 36.93 | 923.19 | | 07/18/74 | 23.48 | 936.64 | | | | | 07/29/74 | 31.25 | 928.87 | 03/10/83 | 36.70 | 923.42 | | 08/01/74 | 32.04 | 928.08 | 06/15/83 | 38.74 | 921.38 | | 08/05/74 | 31.50 | 928.62 | 08/24/83 | 40.23 | 919.89 | | 08/09/74 | 25.05 | 935.07 | 11/29/83 | 39.12 | 921.00 | | 08/14/74 | 20.44 | 939.68 | 04/04/04 | 20.60 | | | 08/20/74
08/27/74 | 18.26
17.63 | 941.86 | 04/04/84 | 39.68 | 920.44 | | 09/05/74 | 14.61 | 942.49
945.51 | 06/14/84
08/30/84 | 39.90
42.32 | 920.22 | | 09/14/74 | 13.54 | 946.58 | 11/29/84 | 40.30 | 917.80
919.82 | | 09/17/74 | 13.35 | 946.77 | 11/23/04 | 40.30 | 919.62 | | 09/18/74 | 13.44 | 946.68 | 02/28/85 | 39.55 | 920.57 | | 09/24/74 | 12.45 | 947.67 | 06/26/85 | 40.60 | 919.52 | | 10/03/74 | 13.27 | 946.85 | 09/11/85 | 41.68 | 918.44 | | 10/04/74 | 13.36 | 946.76 | 09/25/85 | 41.10 | 919.02 | | 10/05/74 | 15.83 | 944.29 | 10/03/85 | 41.38 | 918.74 | | 10/09/74 | 20.51 | 939.61 | 10/09/85 | 41.01 | 919.11 | | 10/16/74 | 28.68 | 931.44 | 10/15/85 | 41.04 | 919.08 | | 10/23/74 | 32.48 | 927.64 | 10/23/85 | 40.62 | 919.50 | | 10/30/74 | 30.76 | 929.36 | 12/04/85 | 38.88 | 921.24 | | 11/06/74 | 31.79 | 928.33 | | | | | 11/18/74 | 28.24 | 931.88 | 04/12/86 | 40.13 | 919.99 | | 12/03/74 | 28.01 | 932.11 | 05/23/86 | 39.39 | 920.73 | | 01/00/75 | 20.06 | 000 00 | 07/16/86 | 39.03 | 921.09 | | 01/22/75
02/25/75 | 30.86
27.86 | 929.26
932.26 | 09/04/86
10/28/86 | 47.26 | 912.86 | | 06/03/75 | 16.12 | 944.00 | 11/04/86 | 40.95
48.19 | 919.17
911.93 | | 06/18/75 | 13.70 | 946.42 | 11/25/86 | 49.82 | 910.30 | | 07/15/75 | 10.51 | 949.61 | 12/01/86 | 52.26 | 907.86 | | 12/02/75 | 28.22 | 931.90 | | 32.20 | 307.00 | | 01/21/74 | 18.51 | 941.61 | 01/07/87 | 52.88 | 907.24 | | 01/21/76
04/09/76 | 18.51 | 941.61 | 01/28/87 | 52.55
54.67 | 907.57 | | 06/02/76 | 17.47 | 949.19 | 03/03/87
03/24/87 | 54.67
55.75 | 905.45
904.37 | | 06/02/76 | 18.26 | 941.86 | 05/13/87 | 48.97 | 911.15 | | 06/30/76 | 19.28 | 940.84 | 07/02/87 | 49.44 | 910.68 | | 07/21/76 | 22.02 | 938.10 | 07/10/87 | 49.64 | 910.48 | | 08/11/76 | 28.93 | 931.19 | 08/03/87 | 47.28 | 912.84 | | 08/24/76 | 30.67 | 929.45 | 08/31/87 | 47.70 | 912.42 | | 09/28/76 | 29.08 | 931.04 | 09/17/87 | 46.80 | 913.32 | | 11/02/76 | 26.50 | 933.62 | 10/02/87 | 46.65 | 913.47 | | 12/06/76 | 29.77 | 930.35 | 11/02/87 | 46.81 | 913.31 | | NA N. ANDREW TO THE PARTY OF TH | 19000000- 1900 | AND MARKET THE PARTY OF PAR | 11/25/87 | 45.48 | 914.64 | | 01/04/77 | 29.72 | 930.40 | 11/30/87 | 45.44 | 914.68 | | Depth to Water (ft) (msl, ft) Date Water (ft) (msl, ft) Date Water (ft) (msl, ft) 04/19/89 45.55 914.57 02/12/88 44.48 915.64 05/16/89 50.65 909.47 04/22/88 45.16 914.96 06/20/89 49.59 910.53 05/23/88 45.16 914.96 06/20/89 52.33 907.79 07/01/88 49.57 910.55 08/15/89 52.33 907.79 07/01/88 49.57 910.55 08/15/89 52.33 907.79 08/23/88 47.45 912.67 12/01/89 48.19 911.73 10/03/89 47.45 912.67 12/01/89 47.11 913.01 11/30/88 45.68 914.44 01/03/90 45.59 914.53 01/04/89 45.70 914.42 04/23/90 45.50 914.62 01/04/89 45.70 914.42 04/23/90 45.50 914.62 01/04/89 45.70 914.44 05/21/90 46.09 914.03 03/15/89 45.72 914.40 05/21/90 46.09 914.03 03/15/89 45.72 914.40 05/21/90 46.09 914.03 03/15/89 45.79 914.14 06/13/90 48.60 911.52 133-047-19DAN Mahbeton Shallow Sand Acuifer Sand Marker (ft) (msl, ft) bate Water (ft) (msl, ft) 960.1 133-047-20AACCB1 Ashbeton Buried Vallev Acuifer Depth to WL Elev Date Water (ft) (msl, ft) 960.99/10/85 55.86 913.49 05/14/87 64.63 905.72 909/09/85 55.86 913.49 05/14/87 64.63 905.72 909/10/85 55.48 915.53 07/03/87 65.51 904.84 909/10/85 55.89 916.37 12/01/89 55.38 904.97 199/16/85 55.38 914.97 10/03/85 55.89 916.37 12/01/87 55.29 915.30 08/31/87 65.53 904.97 199/16/85 55.38 914.97 04/22/88 57.82 915.53 10/03/85 55.38 914.97 04/22/88 57.82 915.53 10/03/85 55.38 914.97 04/22/88 57.82 915.53 10/03/85 55.38 914.97 04/22/88 57.82 915.53 10/03/85 55.38 914.97 04/22/88 57.82 915.53 10/03/85 55.38 914.97 04/22/88 57.82 915.53 10/03/85 55.38 914.97 04/22/88 57.82 915.30 09/30/86 56.96 917.79 01/03/85 59.86 910.49 06/23/88 62.63 907.74 11/03/85 55.24 917.79 01/03/85 59.86 910.49 06/23/88 62.63 907.74 11/03/85 52.46 917.89 11/03/85 59.48 915.37 01/03/85 59.48 915.37 01/03/85 59.48 915.37 01/03/85 59.48 915.37 01/03/85 59.48 915.37 01/03/85 59.48 915.37 01/03/85 59.48 915.37 01/03/85 59.48 915.37 01/03/85 59.48 915.39 01/03/85 59.48 915.39 01/03/85 59.48 915.39 01/03/ | 133-047-1
Wahpeton | 1 8ADA
Buried Vallev | (Continued)
Aguifer | | LS Elev (msl
SI (f | ,ft)=960.12
t.)=219-225 |
--|-----------------------|--------------------------------|------------------------|----------|-----------------------|----------------------------| | Date Water (ft) (msl, ft) Date Water (ft) (msl, ft) | | | | | | WL Elev | | 12/11/88 | Date | | | Date | | (msl, ft) | | 104/21/88 45.16 914.96 06/20/89 49.59 910.53 106/23/88 49.69 910.43 07/18/89 52.33 907.79 107/01/88 49.57 910.55 08/15/89 50.73 909.39 107/01/88 49.57 910.55 08/15/89 50.73 909.39 107/21/88 48.39 911.73 10/05/89 48.05 912.07 108/23/88 47.94 912.18 10/24/89 47.11 913.01 109/23/88 46.52 913.60 01/03/90 45.59 914.53 109/23/88 45.68 914.44 01/03/90 45.59 914.53 101/04/89 45.70 914.42 04/23/90 46.05 914.07 102/15/89 45.78 914.34 06/13/90 48.60 911.52 103/15/89 45.78 914.34 06/13/90 48.60 911.52 103-047-19DAA LS Elev (mal.ft) 60/13/90 48.60 911.52 103-047-19DAA LS Elev (mal.ft) 60/13/90 60.09 104/89 9.03 951.17 02/26/70 8.72 951.48 103-047-20AACCB1 LS Elev (mal.ft) 60/13/90 60.09 104/89 9.03 951.17 02/26/70 8.72 951.48 103-047-20AACCB1 LS Elev (mal.ft) 60/13/90 60/13/90 104/80 9.03 951.17 02/26/70 8.72 951.48 103-047-20AACCB1 LS Elev (mal.ft) 60/13/90 60/13/90 103/15/85 55.63 910.72 03/03/87 82.04 888.31 103/99/985 56.86 913.49 05/14/87 64.63 905.72 103/99/985 55.48 915.53 07/03/87 65.51 90.84 103/99/10/85 55.38 914.97 04/22/88 57.40 912.95 104/99/85 55.38 914.97 04/22/88 57.82 912.53 104/99/85 55.38 914.97 04/22/88 57.82 912.53 104/99/85 55.38 914.97 04/22/88 69.86 900.42 104/16/85 55.36 917.39 07/27/88 68.30 902.05 104/16/85 55.46 917.89 914.16 08/23/88 69.86 900.42 104/16/86 54.18 916.17 03/16/89 58.43 901.97 104/16/86 54.21 916.14 00/16/89 58.43 901.97 104/16/86 54.21 916.14 10/05/89 60.10 909.35 104/16/86 54.21 916.14 10/05/89 60.10 909.35 104/16/86 54.21 916.14 10/05/89 60.10 909.35 104/16/86 54.21 916.14 10/05/89 60.10 909.35 104/16/86 54.21 916.14 10 | | | | 04/19/89 | 45.55 | 914.57 | | 106/23/88 49.69 910.43 07/18/89 52.33 907.79 07/01/88 48.39 911.73 10/05/89 48.05 912.07 07/27/88 48.39 911.73 10/05/89 48.05 912.07 08/23/88 47.45 912.67 12/01/89 46.19 913.93 08/23/88 47.45 912.67 12/01/89 46.19 913.93 01/27/88 46.52 913.60 01/13/98 45.68 914.44 01/03/90 45.59 914.53 01/04/89 45.70 914.42 04/23/90 46.05 914.02 02/15/89 45.72 914.40 05/21/90 46.09 914.03 03/15/89 45.78 914.34 06/13/90 48.60 911.52 01/04/89 45.78 914.34 06/13/90 48.60 911.52 01/18/89 45.78 914.34 06/13/90 48.60 911.52 01/18/89 45.78 914.34 06/13/90 48.60 911.52 01/18/89 45.78 914.34 06/13/90 48.60 911.52 01/18/89 45.78 914.34 06/13/90 48.60 911.52 01/18/89 9.03 951.17 02/26/70 8.72 951.48 01/18/89 9.03 951.17 95.17 | 02/12/88 | 44.48 | 915.64 | 05/16/89 | 50.65 | 909.47 | | | 04/22/88 | 45.16 | 914.96 | 06/20/89 | 49.59 | 910.53 | | 107/27/88 | 06/23/88 | 49.69 | 910.43 | 07/18/89 | 52.33 | 907.79 | | 1872 188 47.48 912.18 10/24/89 47.11 913.01 1972 188 47.45 912.67 12/01/89 46.19 913.93 10/27/88 46.52 913.60 11/30/88 45.68 914.44 01/30/90 45.59 914.53 10/24/89 45.70 914.42 04/23/90 46.05 914.03 10/24/89 45.78 914.34 06/13/90 46.05 914.03 10/3/5/89 45.78 914.34 06/13/90 48.60 911.52 133-047-19DAA | 07/01/88 | 49.57 | 910.55 | 08/15/89 | 50.73 | 909.39 | | 197/39/88 47.45 912.67 10/27/88 46.52 913.60 11/30/88 45.68 914.44 01/03/90 45.59 914.53 01/04/89 45.70 914.42 01/04/89 45.70 914.42 01/03/90 46.05 914.02 01/16/89 45.72 914.40 05/21/90 46.05 914.03 03/15/89 45.72 914.40 05/21/90 46.09 914.03 03/15/89 45.78 914.34 06/13/90 48.60 911.52 133-047-19DAA Malmoeton Shallow Sand Adulfer Depth to WL Elev Date Water (ft) (msl, ft) W | 07/27/88 | 48.39 | 911.73 | 10/05/89 | 48.05 | 912.07 | | 10/27/88 | 08/23/88 | 47.94 | 912.18 | 10/24/89 | 47.11 | 913.01 | | 11/30/88 | 09/29/88 | 47.45 | 912.67 | 12/01/89 | 46.19 | 913.93 | | 03/29/90 45.50 914.62 04/23/90 46.05 914.07 02/15/89 45.72 914.40 05/21/90 46.05 914.07 02/15/89 45.78 914.34 06/13/90 48.60 911.52 133-047-19DAA LS Elev (msl,ft)=960. SI (ft.]=46-4 Mahneton Shallow Sand Acuifer Depth to WL Blev (msl, ft) Date Water (ft) Date Water (ft) (msl, ft) Date Date Water (ft) (msl, ft) Date Date Water (ft) (msl, ft) Date D | 10/27/88 | 46.52 | 913.60 | | | | | | 11/30/88 | 45.68 | 914.44 | 01/03/90 | 45.59 | 914.53 | | 133-047-19DAN LS Elev | | | | 03/29/90 | 45.50 | 914.62 | | 133-047-19DAN LS Elev (msl,ft)=960. 133-047-19DAN LS Elev (msl,ft)=960. Depth to WL Elev Depth to Water (ft) (msl, ft) Depth to WL Elev Date Water (ft) msl, ft Depth to WL Elev Date Water (ft) msl, ft 11/18/69 9.03 951.17 02/26/70 8.72 951.48 133-047-20AACCB1 LS Elev (msl,ft)=970.3 1448-10-10-10-10-10-10-10-10-10-10-10-10-10- | 01/04/89 | 45.70 | 914.42 | 04/23/90 | 46.05 | 914.07 | | LS Elev (msl,ft)=960 ST (ftl)=46-4: Depth to ML Elev Date Depth to ML Elev Date Water (ft) (msl, ft) Date Depth to ML Elev Date Depth to Maker (ft) (msl, ft ST (ftl)=45-27. ST (ftl)=45-27. Depth to ML Elev Date Maker (ft) (msl, ft Depth to ML Elev Date Maker (ft) (msl, ft Depth to ML Elev Date Depth to ML Elev Depth to ML Elev Date Depth to ML Elev Depth to ML Elev Date Depth to ML Elev Depth to ML Elev Date Depth to ML Elev Depth to ML Elev Date Depth to Maker (ft) (msl, ft Depth to ML Elev Date Depth to ML Elev Depth to ML Elev Date Depth to Date Depth to Depth to ML Elev Date Depth to Date Depth to Depth to Depth to ML Elev Date Depth to Date Depth to Depth | 02/15/89 | 45.72 | 914.40 | 05/21/90 | 46.09 | 914.03 | | Sampleton Shallow Sand Acuifer Depth to Will Elev Date Water (ft) (msl, ft) Date Water (ft) (msl, ft) | 03/15/89 | 45.78 | | 06/13/90 | 48.60 | 911.52 | | Depth to Water (ft) (msl, ft) Date Water (ft) (msl, ft) 11/18/69 9.03 951.17 02/26/70 8.72 951.48 133-047-20AACCB1 Water (ft) (msl, ft) Depth to WL Elev Depth to WL Elev Depth to Water (ft) (msl, ft) Depth to WL Elev Depth to Water (ft) (msl, ft) | 133-047-1 | 19DAA | | | LS Elev (ms | 1,ft)=960.2 | | Date Water (ft) (msl, ft)
Date Water (ft) (msl, ft) | Wahpeton | Shallow Sand | Aguifer | | SI | (ft.)=46-49 | | Date Water (ft) (msl, ft) 11/18/69 9.03 951.17 02/26/70 8.72 951.48 133-047-20AACCB1 | | | | | Depth to | WL Elev | | Altered Buried Valley Aguifer SI (ft.) = 268-27 | Date | | (msl, ft) | Date | Water (ft) | (msl, ft) | | Depth to WL Elev Depth to WL Elev Water (ft) (msl, ft) Date Depth to WL Elev Water (ft) (msl, ft) Date Water (ft) (msl, ft) Date Depth to WL Elev Water (ft) (msl, ft) Date Depth to WL Elev Water (ft) (msl, ft) Date Water (ft) (msl, ft) Date Depth to WL Elev Date D | 11/18/69 | 9.03 | 951.17 | 02/26/70 | 8.72 | 951.48 | | Depth to Water (ft) (msl, ft) Date (msl | | | | | | St on one or or continue | | Date Water (ft) (ms1, ft) (ft) (46.63 Date Water (ft) Date Water (ft) (46.63 Date Water (ft) (46.63 Date Water (ft) Wa | Wahpeton | <u>Buried Vallev</u> | Aquifer | | | | | 09/05/85 59.63 910.72 03/03/87 82.04 888.31 09/09/85 56.86 913.49 05/14/87 64.63 905.72 09/10/85 54.82 915.53 07/03/87 65.51 904.84 09/11/85 55.24 915.11 08/04/87 61.93 908.42 09/12/85 54.05 916.30 08/31/87 65.38 904.97 09/25/85 55.38 916.37 12/01/87 57.40 912.95 09/25/85 55.38 914.97 10/03/85 55.38 914.97 10/03/85 55.38 914.97 04/22/88 57.82 912.53 10/09/85 55.28 915.07 06/30/88 69.86 900.49 10/15/85 55.28 915.07 06/30/88 60.86 900.49 10/15/85 55.29 917.39 07/27/88 68.30 902.05 10/23/85 56.19 914.16 08/23/88 62.63 907.72 10/24/85 53.13 917.22 09/30/88 62.88 907.47 11/01/85 53.40 916.95 10/27/88 59.86 910.49 11/01/85 53.40 916.95 10/27/88 59.86 910.49 11/01/85 52.46 917.89 11/21/085 52.46 917.89 10/21/85 52.46 917.89 10/21/85 55.60 917.39 01/04/89 59.04 911.31 00/15/86 53.31 917.04 04/19/89 60.19 910.16 09/30/86 55.96 913.39 05/17/89 66.19 910.16 09/30/86 54.18 916.17 03/16/89 58.22 912.13 00/16/89 58.22 912.13 00/16/86 54.18 916.17 03/16/89 58.43 911.92 05/15/86 53.31 917.04 04/19/89 60.19 910.16 09/30/86 56.96 913.39 05/17/89 67.76 902.59 01/00/86 54.84 915.51 07/19/89 69.12 901.23 01/00/86 54.84 915.51 07/19/89 69.12 901.23 01/00/86 54.84 915.51 07/19/89 69.12 901.23 01/00/86 54.77 915.58 06/21/89 64.15 906.29 01/00/86 54.77 915.58 06/21/89 64.15 906.29 01/00/86 54.77 915.58 06/21/89 64.15 906.29 01/01/86 53.98 916.37 10/25/89 59.98 910.37 10/15/86 54.29 916.06 11/29/89 58.93 911.42 10/16/86 54.29 916.06 11/29/89 58.93 911.42 11/04/86 75.09 895.26 01/03/90 57.48 912.87 11/04/86 75.09 895.26 01/03/90 57.48 912.87 11/00/86 77.49 892.86 03/30/90 57.48 912.87 11/00/86 77.49 892.86 03/30/90 57.48 912.87 11/00/86 77.49 892.86 03/30/90 57.48 912.87 11/00/86 77.49 892.86 03/30/90 57.48 912.87 11/00/86 76.63 893.72 04/23/90 61.55 908.80 05/21/90 61.51 908.80 05/21/90 61.51 908.80 05/21/90 61.51 908.80 05/21/90 61.51 908.80 05/21/90 61.51 908.80 05/21/90 61.51 908.80 05/21/90 61.51 908.80 05/21/90 61.51 908.80 05/21/90 61.51 908.80 05/21/90 61.51 907.17 | | | | | - | | | 09/09/85 56.86 913.49 05/14/87 64.63 905.72 09/10/85 54.82 915.53 07/03/87 65.51 904.84 09/11/85 55.24 915.11 08/04/87 61.93 908.42 09/12/85 54.05 916.30 08/31/87 65.38 904.97 09/18/85 53.98 916.37 12/01/87 57.40 912.95 09/25/85 55.38 914.97 10/03/85 55.38 914.97 10/09/85 56.06 914.29 06/23/88 69.86 900.49 10/15/85 55.28 915.07 06/30/88 70.64 899.71 10/17/85 52.96 917.39 07/27/88 68.30 902.05 10/23/85 53.13 917.22 09/30/88 62.88 907.47 11/01/85 53.40 916.95 10/27/88 59.86 910.49 11/13/85 52.48 917.87 11/30/88 57.88 912.47 11/01/85 52.46 917.89 12/11/85 52.56 917.79 01/04/89 59.04 911.31 12/11/85 52.56 917.79 01/04/89 58.22 912.13 04/10/86 54.18 916.17 03/16/89 58.22 912.13 04/10/86 55.07 915.28 06/21/89 60.19 910.16 09/30/86 56.96 913.39 05/17/89 67.76 902.59 10/07/86 55.07 915.28 06/21/89 64.15 906.20 10/07/86 54.21 916.14 10/05/89 69.12 901.23 10/10/86 54.21 916.14 10/05/89 69.10 909.35 10/11/86 53.98 916.37 10/25/89 59.98 910.37 10/15/86 54.21 916.14 10/05/89 69.12 901.23 10/16/86 54.21 916.14 10/05/89 69.10 909.35 10/11/86 53.98 916.37 10/25/89 59.98 910.37 10/15/86 54.29 916.06 11/29/89 58.93 911.42 10/28/86 54.76 915.59 11/04/86 75.09 895.26 01/03/90 59.32 911.03 10/20/86 77.49 892.86 03/30/90 57.48 912.87 01/07/87 80.32 890.03 06/13/90 61.55 908.80 | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 09/10/85 54.82 915.53 07/03/87 65.51 904.84 09/11/85 55.24 915.11 08/04/87 61.93 908.42 09/12/85 54.05 916.30 08/31/87 65.38 904.97 09/25/85 55.38 914.97 10/03/85 55.38 914.97 10/03/85 55.28 915.07 06/30/88 70.64 899.71 10/15/85 55.29 915.07 06/30/88 70.64 899.71 10/17/85 52.96 917.39 07/27/88 68.30 902.05 10/23/85 55.31 917.22 09/30/88 62.88 907.47 11/01/85 53.40 916.95 10/27/88 59.86 910.49 11/10/85 52.48 917.87 11/30/88 57.88 912.47 12/10/85 52.46 917.89 12/11/85 52.56 917.79 01/04/89 59.04 911.31 004/10/86 54.18 916.17 03/16/89 58.22 912.13 004/10/86 55.07 915.28 06/21/89 60.19 910.16 009/30/86 56.96 913.39 05/17/89 67.76 902.59 10/00/86 54.77 915.58 08/15/89 71.04 899.31 10/10/86 54.21 916.14 10/05/89 61.00 909.35 10/12/86 53.98 916.37 10/25/89 59.98 910.37 10/10/86 54.77 915.58 08/15/89 71.04 899.31 10/10/86 54.21 916.14 10/05/89 61.00 909.35 10/10/86 54.77 915.58 08/15/89 71.04 899.31 10/10/86 54.21 916.14 10/05/89 61.00 909.35 10/10/86 54.77 915.58 08/15/89 71.04 899.31 10/10/86 54.77 915.58 08/15/89 71.04 899.31 10/10/86 54.77 915.58 08/15/89 59.98 910.37 10/10/86 54.77 915.58 08/15/89 59.98 910.37 10/10/86 54.77 915.58 08/15/89 59.98 910.37 10/10/86 54.77 915.58 08/15/89 59.98 910.37 10/10/86 54.79 916.14 10/05/89 61.00 909.35 10/10/86 54.76 915.59 11/04/86 75.09 895.26 01/03/90 59.32 911.03 10/10/86 77.49 892.86 03/30/90 57.48 912.87 10/10/86 77.49 892.86 03/30/90 57.48 912.87 10/10/86 77.49 892.86 03/30/90 57.48 912.87 10/10/87 80.32 890.03 06/13/90 63.18 907.17 | 09/05/85 | 59.63 | 910.72 | 03/03/87 | | | | 09/11/85 | 09/09/85 | | | 05/14/87 | | | | 09/12/85 54.05 916.30 08/31/87 65.38 904.97 09/18/85 53.98 916.37 12/01/87 57.40 912.95 09/25/85 55.38 914.97 04/22/88 57.82 912.53 10/09/85 56.06 914.29 06/33/88 69.86 900.49 10/15/85 55.28 915.07 06/30/88 70.64 899.71 10/15/85 55.28 915.07 06/30/88 62.63 907.72 10/17/85 52.96 917.39 07/27/88 68.30 902.05 10/23/85 56.19 914.16 08/23/88 62.63 907.72 10/24/85 53.13 917.22 09/30/88 62.88 907.47 11/01/85 53.40 916.95 10/27/88 59.86 910.49 11/13/85 52.48 917.89 11/30/88 57.88 912.47 12/11/85 52.56 917.79 01/04/89 59.04 911.31 06/51/86 53.31 | 09/10/85 | 54.82 | 915.53 | 07/03/87 | | | | 09/18/85 53.98 916.37 12/01/87 57.40 912.95 09/25/85 55.38 914.97 04/22/88 57.82 912.53 10/03/85 55.38 914.97 04/22/88 69.86 900.49 10/15/85 55.28 915.07 06/30/88 70.64 899.71 10/17/85 52.96 917.39 07/27/88 68.30 902.05 10/23/85 56.19 914.16 08/23/88 62.63 907.72 10/24/85 53.13 917.22 09/30/88 62.88 907.47 11/01/85 53.40 916.95 10/27/88 59.86 910.49 11/13/85 52.48 917.87 11/30/88 57.88 912.47 12/10/85 52.46 917.89 11/30/88 57.88 912.47 12/10/86 54.18 916.17 03/16/89 58.43 911.31 04/10/86 54.18 916.17 03/16/89 58.43 911.92 05/15/86 53.31 | 09/11/85 | 55.24 | 915.11 | 08/04/87 | | 908.42 | | 09/25/85 55.38 914.97 10/03/85 55.38 914.97 10/03/85 55.38 914.97 10/05/85 56.06 914.29 06/23/88 69.86 900.49 10/15/85 55.28 915.07 06/30/88 70.64 899.71 10/17/85 52.96 917.39 07/27/88 68.30 902.05 10/23/85 56.19 914.16 08/23/88 62.63 907.72 10/24/85 53.13 917.22 09/30/88 62.88 907.47 11/01/85 52.48 917.87 10/27/88 59.86 910.49 11/13/85 52.48 917.87 11/30/88 57.88 912.47 11/01/85 52.46 917.89 12/11/85 52.56 917.79 01/04/89 59.04 911.31 04/10/86 54.18 916.17 03/16/89 58.22 912.13 04/10/86 53.31 917.04 04/19/89 60.19 910.16 09/30/86 56.96 913.39 05/17/89 67.76 902.59 10/07/86 55.07 915.28 06/21/89 64.15 906.20 10/08/86 54.84 915.51 07/19/89 69.12 901.23 10/09/86 54.77 915.58 08/15/89 71.04 899.31 10/10/86 54.21 916.14 10/05/89 61.00 909.35 10/10/86 54.21 916.14 10/05/89 61.00 909.35 10/10/86 54.21 916.14 10/05/89 58.93 910.37 10/15/86 54.29 916.06 11/29/89 58.93 910.37 10/15/86 54.21 916.14 10/05/89 59.98 910.37 10/15/86 54.21 916.14 10/05/89 59.98 910.37 10/15/86 54.21 916.14 10/05/89 59.98 910.37 10/15/86 54.21 916.14 10/05/89 59.98 910.37 10/15/86 54.21 916.16 11/29/89 58.93 911.42 10/28/86 76.63 893.72 04/23/90 61.55 908.80 11/04/86 75.09 895.26 01/03/90 59.32 911.03 12/01/86 77.49 892.86 03/30/90 57.48 912.87 10/10/86 77.49 892.86 03/30/90 57.48 912.87 10/10/86 77.49 892.86 03/30/90 57.48 912.87 10/10/86 77.49 892.86 03/30/90 57.48 912.87 10/10/86 77.49 892.86 03/30/90 55.31 908.80 05/5/21/90 61.51 908.94 | 09/12/85 | 54.05 | 916.30 | 08/31/87 | 65.38 | 904.97 | | 10/03/85 | 09/18/85 | 53.98 | 916.37 | 12/01/87 | 57.40 | 912.95 | | 10/09/85 56.06 914.29 06/23/88 69.86 900.49 10/15/85 55.28 915.07 06/30/88 70.64 899.71 10/17/85 52.96 917.39 07/27/88 68.30 902.05 10/23/85 56.19 914.16 08/23/88 62.63 907.72 11/01/85 53.40 916.95 10/27/88 59.86 910.49 11/13/85 52.48 917.87 11/30/88 57.88 912.47 11/10/85 52.46 917.89 11/21/10/85 52.56 917.79 01/04/89 59.04 911.31 04/10/86 54.18 916.17 03/16/89 58.22 912.13 04/10/86 55.31 917.04 04/19/89 60.19 910.16 09/30/86 56.96 913.39 05/17/89 67.76 902.59 10/07/86 55.07 915.28 06/21/89 64.15 906.20 10/08/86 54.84 915.51 07/19/89 69.12 901.23 10/09/86 54.77 915.58 08/15/89 71.04 899.31 10/10/86 54.21 916.14 10/05/89 69.12 901.23 10/09/86 54.21 916.14 10/05/89 69.12 901.23 10/10/86 54.21 916.14 10/05/89 69.12 901.23 10/10/86 54.21 916.14 10/05/89 69.12 901.23 10/10/86 54.21 916.14 10/05/89 69.12 901.23 10/10/86 54.21 916.14 10/05/89 69.12 901.23 10/15/86 54.29 916.06 11/29/89 58.93 911.42 10/28/86 76.63 893.72 04/23/90 57.48 912.87 11/04/86 75.09 895.26 01/03/90 59.32 911.03 12/01/86 77.49 892.86 03/30/90 57.48 912.87 12/02/86 76.63 893.72 04/23/90 61.55 908.80 05/21/90 61.41 908.94 01/07/87 80.32 890.03 06/13/90 63.18 907.17 | 09/25/85 | 55.38 | 914.97 | | | | | 10/15/85 55.28 915.07 06/30/88 70.64 899.71 10/17/85 52.96 917.39 07/27/88 68.30 902.05 10/23/85 56.19 914.16 08/23/88 62.63 907.72 10/24/85 53.13 917.22 09/30/88 62.88 907.47 11/01/85 53.40 916.95 10/27/88 59.86 910.49 11/13/85 52.48 917.87
11/30/88 57.88 912.47 12/10/85 52.46 917.89 12/11/85 52.56 917.79 01/04/89 59.04 911.31 04/10/86 54.18 916.17 03/16/89 58.22 912.13 04/10/86 55.31 917.04 04/19/89 60.19 910.16 09/30/86 56.96 913.39 05/17/89 67.76 902.59 10/07/86 55.07 915.28 06/21/89 64.15 906.20 10/08/86 54.84 915.51 07/19/89 69.12 901.23 10/09/86 54.77 915.58 08/15/89 71.04 899.31 10/10/86 54.21 916.14 10/05/89 61.00 909.35 10/11/86 53.98 916.37 10/25/89 59.98 910.37 10/15/86 54.29 916.06 11/29/89 58.93 911.42 10/28/86 75.09 895.26 01/03/90 59.32 911.03 12/01/86 77.49 892.86 03/30/90 57.48 912.87 12/02/86 76.63 893.72 04/23/90 61.55 908.80 05/21/90 61.41 908.94 01/07/87 80.32 890.03 06/13/90 63.18 907.17 | 10/03/85 | 55.38 | 914.97 | 04/22/88 | 57.82 | 912.53 | | 10/17/85 52.96 917.39 07/27/88 68.30 902.05 10/23/85 56.19 914.16 08/23/88 62.63 907.72 10/24/85 53.13 917.22 09/30/88 62.88 907.47 11/01/85 53.40 916.95 10/27/88 59.86 910.49 11/13/85 52.48 917.89 11/30/88 57.88 912.47 12/10/85 52.46 917.89 12/11/85 52.56 917.79 01/04/89 59.04 911.31 04/10/86 54.18 916.17 03/16/89 58.22 912.13 04/10/86 54.18 916.17 03/16/89 58.43 911.92 05/15/86 53.31 917.04 04/19/89 60.19 910.16 09/30/86 56.96 913.39 05/17/89 67.76 902.59 10/07/86 55.07 915.28 06/21/89 64.15 906.20 10/08/86 54.84 915.51 07/19/89 69.12 901.23 10/10/86 54.21 916.14 10/05/89 61.00 | 10/09/85 | 56.06 | 914.29 | 06/23/88 | 69.86 | 900.49 | | 10/23/85 56.19 914.16 08/23/88 62.63 907.72 10/24/85 53.13 917.22 09/30/88 62.88 907.47 11/01/85 53.40 916.95 10/27/88 59.86 910.49 11/13/85 52.48 917.87 11/30/88 57.88 912.47 12/10/85 52.46 917.89 91.79 01/04/89 59.04 911.31 04/10/86 54.18 916.17 03/16/89 58.22 912.13 04/10/86 54.18 916.17 03/16/89 58.43 911.92 05/15/86 53.31 917.04 04/19/89 60.19 910.16 09/30/86 56.96 913.39 05/17/89 67.76 902.59 10/07/86 55.07 915.28 06/21/89 64.15 906.20 10/08/86 54.84 915.51 07/19/89 69.12 901.23 10/09/86 54.21 916.14 10/05/89 61.00 909.35 10/15/86 54.29 916.06 11/29/89 58.93 911.42 10/28 | 10/15/85 | 55.28 | 915.07 | 06/30/88 | 70.64 | 899.71 | | 10/24/85 | 10/17/85 | 52.96 | 917.39 | 07/27/88 | 68.30 | 902.05 | | 11/01/85 | 10/23/85 | 56.19 | 914.16 | 08/23/88 | 62.63 | 907.72 | | 11/13/85 52.48 917.87 11/30/88 57.88 912.47 12/10/85 52.46 917.89 01/04/89 59.04 911.31 04/10/86 54.18 916.17 03/16/89 58.22 912.13 05/15/86 53.31 917.04 04/19/89 60.19 910.16 09/30/86 56.96 913.39 05/17/89 67.76 902.59 10/07/86 55.07 915.28 06/21/89 64.15 906.20 10/08/86 54.84 915.51 07/19/89 69.12 901.23 10/09/86 54.77 915.58 08/15/89 71.04 899.31 10/10/86 54.21 916.14 10/05/89 61.00 909.35 10/11/86 53.98 916.37 10/25/89 59.98 910.37 10/28/86 54.76 915.59 11/29/89 58.93 911.42 11/04/86 75.09 895.26 01/03/90 59.32 911.03 12/01/86 77.49 892.86 03/30/90 57.48 912.87 12/02/86 76 | 10/24/85 | 53.13 | 917.22 | 09/30/88 | 62.88 | 907.47 | | 12/10/85 | 11/01/85 | 53.40 | 916.95 | 10/27/88 | 59.86 | 910.49 | | 12/11/85 | 11/13/85 | 52.48 | 917.87 | 11/30/88 | 57.88 | 912.47 | | 02/16/89 58.22 912.13
04/10/86 54.18 916.17 03/16/89 58.43 911.92
05/15/86 53.31 917.04 04/19/89 60.19 910.16
09/30/86 56.96 913.39 05/17/89 67.76 902.59
10/07/86 55.07 915.28 06/21/89 64.15 906.20
10/08/86 54.84 915.51 07/19/89 69.12 901.23
10/09/86 54.77 915.58 08/15/89 71.04 899.31
10/10/86 54.21 916.14 10/05/89 61.00 909.35
10/11/86 53.98 916.37 10/25/89 59.98 910.37
10/15/86 54.29 916.06 11/29/89 58.93 911.42
10/28/86 54.76 915.59
11/04/86 75.09 895.26 01/03/90 59.32 911.03
12/01/86 77.49 892.86 03/30/90 57.48 912.87
12/02/86 76.63 893.72 04/23/90 61.55 908.80
05/21/90 61.41 908.94
01/07/87 80.32 890.03 06/13/90 63.18 907.17 | 12/10/85 | 52.46 | 917.89 | | | | | 04/10/86 54.18 916.17 03/16/89 58.43 911.92 05/15/86 53.31 917.04 04/19/89 60.19 910.16 09/30/86 56.96 913.39 05/17/89 67.76 902.59 10/07/86 55.07 915.28 06/21/89 64.15 906.20 10/08/86 54.84 915.51 07/19/89 69.12 901.23 10/09/86 54.77 915.58 08/15/89 71.04 899.31 10/10/86 54.21 916.14 10/05/89 61.00 909.35 10/11/86 53.98 916.37 10/25/89 59.98 910.37 10/15/86 54.29 916.06 11/29/89 58.93 911.42 10/28/86 54.76 915.59 911.03 11/04/86 75.09 895.26 01/03/90 59.32 911.03 12/01/86 77.49 892.86 03/30/90 57.48 912.87 12/02/86 76.63 893.72 04/23/90 61.55 908.80 05/21/90 61.41 908.94 | 12/11/85 | 52.56 | 917.79 | 01/04/89 | 59.04 | 911.31 | | 05/15/86 53.31 917.04 04/19/89 60.19 910.16
09/30/86 56.96 913.39 05/17/89 67.76 902.59
10/07/86 55.07 915.28 06/21/89 64.15 906.20
10/08/86 54.84 915.51 07/19/89 69.12 901.23
10/09/86 54.77 915.58 08/15/89 71.04 899.31
10/10/86 54.21 916.14 10/05/89 61.00 909.35
10/11/86 53.98 916.37 10/25/89 59.98 910.37
10/15/86 54.29 916.06 11/29/89 58.93 911.42
10/28/86 54.76 915.59
11/04/86 75.09 895.26 01/03/90 59.32 911.03
12/01/86 77.49 892.86 03/30/90 57.48 912.87
12/02/86 76.63 893.72 04/23/90 61.55 908.80
05/21/90 61.41 908.94
01/07/87 80.32 890.03 06/13/90 63.18 907.17 | | | | 02/16/89 | 58.22 | 912.13 | | 09/30/86 56.96 913.39 05/17/89 67.76 902.59
10/07/86 55.07 915.28 06/21/89 64.15 906.20
10/08/86 54.84 915.51 07/19/89 69.12 901.23
10/09/86 54.77 915.58 08/15/89 71.04 899.31
10/10/86 54.21 916.14 10/05/89 61.00 909.35
10/11/86 53.98 916.37 10/25/89 59.98 910.37
10/15/86 54.29 916.06 11/29/89 58.93 911.42
10/28/86 54.76 915.59
11/04/86 75.09 895.26 01/03/90 59.32 911.03
12/01/86 77.49 892.86 03/30/90 57.48 912.87
12/02/86 76.63 893.72 04/23/90 61.55 908.80
05/21/90 61.41 908.94
01/07/87 80.32 890.03 06/13/90 63.18 907.17 | 04/10/86 | 54.18 | 916.17 | 03/16/89 | 58.43 | 911.92 | | 10/07/86 55.07 915.28 06/21/89 64.15 906.20 10/08/86 54.84 915.51 07/19/89 69.12 901.23 10/09/86 54.77 915.58 08/15/89 71.04 899.31 10/10/86 54.21 916.14 10/05/89 61.00 909.35 10/11/86 53.98 916.37 10/25/89 59.98 910.37 10/15/86 54.29 916.06 11/29/89 58.93 911.42 10/28/86 54.76 915.59 911.03 911.03 11/04/86 75.09 895.26 01/03/90 59.32 911.03 12/01/86 77.49 892.86 03/30/90 57.48 912.87 12/02/86 76.63 893.72 04/23/90 61.55 908.80 01/07/87 80.32 890.03 06/13/90 63.18 907.17 | 05/15/86 | | 917.04 | 04/19/89 | 60.19 | 910.16 | | 10/08/86 54.84 915.51 07/19/89 69.12 901.23 10/09/86 54.77 915.58 08/15/89 71.04 899.31 10/10/86 54.21 916.14 10/05/89 61.00 909.35 10/11/86 53.98 916.37 10/25/89 59.98 910.37 10/15/86 54.29 916.06 11/29/89 58.93 911.42 10/28/86 54.76 915.59 11/04/86 75.09 895.26 01/03/90 59.32 911.03 12/01/86 77.49 892.86 03/30/90 57.48 912.87 12/02/86 76.63 893.72 04/23/90 61.55 908.80 01/07/87 80.32 890.03 06/13/90 63.18 907.17 | 09/30/86 | 56.96 | 913.39 | 05/17/89 | 67.76 | 902.59 | | 10/08/86 54.84 915.51 07/19/89 69.12 901.23 10/09/86 54.77 915.58 08/15/89 71.04 899.31 10/10/86 54.21 916.14 10/05/89 61.00 909.35 10/11/86 53.98 916.37 10/25/89 59.98 910.37 10/15/86 54.29 916.06 11/29/89 58.93 911.42 10/28/86 54.76 915.59 11/04/86 75.09 895.26 01/03/90 59.32 911.03 12/01/86 77.49 892.86 03/30/90 57.48 912.87 12/02/86 76.63 893.72 04/23/90 61.55 908.80 01/07/87 80.32 890.03 06/13/90 63.18 907.17 | 10/07/86 | 55.07 | 915.28 | | | | | 10/09/86 54.77 915.58 08/15/89 71.04 899.31 10/10/86 54.21 916.14 10/05/89 61.00 909.35 10/11/86 53.98 916.37 10/25/89 59.98 910.37 10/15/86 54.29 916.06 11/29/89 58.93 911.42 10/28/86 54.76 915.59 11/04/86 75.09 895.26 01/03/90 59.32 911.03 12/01/86 77.49 892.86 03/30/90 57.48 912.87 12/02/86 76.63 893.72 04/23/90 61.55 908.80 05/21/90 61.41 908.94 01/07/87 80.32 890.03 06/13/90 63.18 907.17 | 10/08/86 | | | | | | | 10/10/86 54.21 916.14 10/05/89 61.00 909.35 10/11/86 53.98 916.37 10/25/89 59.98 910.37 10/15/86 54.29 916.06 11/29/89 58.93 911.42 10/28/86 54.76 915.59 11/04/86 75.09 895.26 01/03/90 59.32 911.03 12/01/86 77.49 892.86 03/30/90 57.48 912.87 12/02/86 76.63 893.72 04/23/90 61.55 908.80 05/21/90 61.41 908.94 01/07/87 80.32 890.03 06/13/90 63.18 907.17 | 10/09/86 | | | | | | | 10/11/86 53.98 916.37 10/25/89 59.98 910.37 10/15/86 54.29 916.06 11/29/89 58.93 911.42 10/28/86 54.76 915.59 11/04/86 75.09 895.26 01/03/90 59.32 911.03 12/01/86 77.49 892.86 03/30/90 57.48 912.87 12/02/86 76.63 893.72 04/23/90 61.55 908.80 01/07/87 80.32 890.03 06/13/90 63.18 907.17 | 10/10/86 | 54.21 | | | | | | 10/15/86 54.29 916.06 11/29/89 58.93 911.42 10/28/86 54.76 915.59 11/04/86 75.09 895.26 01/03/90 59.32 911.03 12/01/86 77.49 892.86 03/30/90 57.48 912.87 12/02/86 76.63 893.72 04/23/90 61.55 908.80 05/21/90 61.41 908.94 01/07/87 80.32 890.03 06/13/90 63.18 907.17 | 10/11/86 | 53.98 | | | | | | 10/28/86 54.76 915.59 11/04/86 75.09 895.26 01/03/90 59.32 911.03 12/01/86 77.49 892.86 03/30/90 57.48 912.87 12/02/86 76.63 893.72 04/23/90 61.55 908.80 05/21/90 61.41 908.94 01/07/87 80.32 890.03 06/13/90 63.18 907.17 | 10/15/86 | 54.29 | | | | | | 11/04/86 75.09 895.26 01/03/90 59.32 911.03 12/01/86 77.49 892.86 03/30/90 57.48 912.87 12/02/86 76.63 893.72 04/23/90 61.55 908.80 05/21/90 61.41 908.94 01/07/87 80.32 890.03 06/13/90 63.18 907.17 | 10/28/86 | | | | | | | 12/01/86 77.49 892.86 03/30/90 57.48 912.87 12/02/86 76.63 893.72 04/23/90 61.55 908.80 05/21/90 61.41 908.94 01/07/87 80.32 890.03 06/13/90 63.18 907.17 | 11/04/86 | | | 01/03/90 | 59.32 | 911.03 | | 12/02/86 76.63 893.72 04/23/90 61.55 908.80 05/21/90 61.41 908.94 01/07/87 80.32 890.03 06/13/90 63.18 907.17 | 12/01/86 | | | | | | | 05/21/90 61.41 908.94
01/07/87 80.32 890.03 06/13/90 63.18 907.17 | 12/02/86 | | | | | | | 01/07/87 80.32 890.03 06/13/90 63.18 907.17 | Date for 100 | | | | | | | | 01/07/87 | 80.32 | 890.03 | | | | | ACTUAL TOTAL MEMBER | 01/29/87 | 74.54 | 895.81 | | | | LS Elev (msl,ft)=970.4 SI (ft.)=113-118 | 133-047-20AACCB2 | | LS | |-------------------------|---------|----| | Wahpeton Sand Plain Act | uifer | | | Depth to | WL Elev | De | | Wahpeton | Sand Plain Acu | liter | | SI III | (0.1) = 113 - 118 | |----------|----------------|-----------|----------|------------|-------------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 09/05/85 | 59.77 |
910.63 | 03/03/87 | 82.09 | 888.31 | | 09/09/85 | 56.90 | 913.50 | 05/14/87 | 64.71 | 905.69 | | 09/10/85 | 54.86 | 915.54 | 07/03/87 | 65.60 | 904.80 | | 09/11/85 | 55.60 | 914.80 | 08/04/87 | 63.10 | 907.30 | | 09/12/85 | 54.08 | 916.32 | 08/31/87 | 65.45 | 904.95 | | 09/18/85 | 54.03 | 916.37 | 12/01/87 | 57.59 | 912.81 | | 09/25/85 | 55.39 | 915.01 | | | | | 10/03/85 | 55.39 | 915.01 | 04/22/88 | 57.90 | 912.50 | | 10/09/85 | 56.06 | 914.34 | 06/23/88 | 69.93 | 900.47 | | 10/15/85 | 55.34 | 915.06 | 06/30/88 | 70.70 | 899.70 | | 10/17/85 | 53.00 | 917.40 | 07/27/88 | 68.35 | 902.05 | | 10/23/85 | 56.20 | 914.20 | 08/23/88 | 62.73 | 907.67 | | 10/24/85 | 53.17 | 917.23 | 09/30/88 | 62.98 | 907.42 | | 11/01/85 | 53.43 | 916.97 | 10/27/88 | 59.95 | 910.45 | | 11/13/85 | 52.50 | 917.90 | 11/30/88 | 58.00 | 912.40 | | 12/10/85 | 52.51 | 917.89 | | | | | 12/11/85 | 52.59 | 917.81 | 01/04/89 | 59.14 | 911.26 | | | | | 02/16/89 | 58.30 | 912.10 | | 04/10/86 | 54.25 | 916.15 | 03/16/89 | 58.53 | 911.87 | | 05/15/86 | 53.37 | 917.03 | 04/19/89 | 60.27 | 910.13 | | 09/30/86 | 57.01 | 913.39 | 05/17/89 | 67.83 | 902.57 | | 10/07/86 | 55.12 | 915.28 | 06/21/89 | 64.27 | 906.13 | | 10/08/86 | 54.89 | 915.51 | 07/19/89 | 69.19 | 901.21 | | 10/09/86 | 54.81 | 915.59 | 08/15/89 | 71.10 | 899.30 | | 10/10/86 | 54.27 | 916.13 | 10/05/89 | 61.10 | 909.30 | | 10/11/86 | 54.03 | 916.37 | 10/25/89 | 60.05 | 910.35 | | 10/15/86 | 54.31 | 916.09 | 11/29/89 | 59.03 | 911.37 | | 10/28/86 | 54.81 | 915.59 | | | | | 11/04/86 | 75.14 | 895.26 | 01/03/90 | 59.42 | 910.98 | | 12/01/86 | 77.58 | 892.82 | 03/30/90 | 57.35 | 913.05 | | 12/02/86 | 76.71 | 893.69 | 04/23/90 | 61.62 | 908.78 | | | | | 05/21/90 | 61.46 | 908.94 | | 01/07/87 | 80.35 | 890.05 | 06/13/90 | 63.31 | 907.09 | | 01/29/87 | 74.61 | 895.79 | | | | | | | | | | | | | 5 | Aguifer | | | (ft.)=42-57 | |----------|---------------------|-------------------|----------|------------|-------------| | Date | Depth to Water (ft) | WL Elev (msl, ft) | Date | Depth to | WL Elev | | | (10) | (mar, rc, | pace | Water (ft) | (msl, ft) | | 09/05/85 | 32.98 | 937.16 | 07/03/87 | 48.88 | 921.26 | | 09/09/85 | 33.24 | 936.90 | 08/04/87 | 49.58 | 920.56 | | 09/10/85 | 33.43 | 936.71 | 08/31/87 | 49.80 | 920.34 | | 09/11/85 | 33.17 | 936.97 | 10/02/87 | 50.64 | 919.50 | | 09/12/85 | 33.20 | 936.94 | 10/12/87 | 50.34 | 919.80 | | 09/18/85 | 33.18 | 936.96 | 10/20/87 | 50.71 | 919.43 | | 09/25/85 | 33.16 | 936.98 | 11/02/87 | 50.71 | 919.43 | | 10/03/85 | 32.99 | 937.15 | 11/17/87 | 51.00 | 919.14 | | 10/09/85 | 33.15 | 936.99 | 12/01/87 | 50.99 | 919.15 | | 10/15/85 | 33.23 | 936.91 | | | | | 10/17/85 | 32.96 | 937.18 | 02/11/88 | 51.14 | 919.00 | | 10/23/85 | 33.07 | 937.07 | 04/22/88 | 51.03 | 919.11 | | 10/24/85 | 33.33 | 936.81 | 06/23/88 | 50.71 | 919.43 | | 11/01/85 | 33.14 | 937.00 | 06/30/88 | 50.97 | 919.17 | | 11/13/85 | 33.22 | 936.92 | 07/27/88 | 51.14 | 919.00 | | 12/10/85 | 33.25 | 936.89 | 08/23/88 | 51.43 | 918.71 | | 12/11/85 | 33.09 | 937.05 | 09/30/88 | 51.91 | 918.23 | | | | | 10/27/88 | 51.98 | 918.16 | | 04/10/86 | 32.70 | 937.44 | 11/30/88 | 52.39 | 917.75 | | 05/15/86 | 32.22 | 937.92 | | | | | 09/30/86 | 32.29 | 937.85 | 01/04/89 | 52.37 | 917.77 | | 10/08/86 | 32.36 | 937.78 | 02/16/89 | 52.61 | 917.53 | | 10/09/86 | 33.21 | 936.93 | 03/16/89 | 51.94 | 918.20 | | 10/10/86 | 33.20 | 936.94 | 04/19/89 | 50.72 | 919.42 | | 10/11/86 | 34.01 | 936.13 | 05/17/89 | 49.82 | 920.32 | | 10/15/86 | 35.31 | 934.83 | 06/21/89 | 48.62 | 921.52 | | 10/20/86 | 36.45 | 933.69 | 07/19/89 | 47.74 | 922.40 | | 10/28/86 | 35.69 | 934.45 | 08/15/89 | 46.73 | 923.41 | | 11/04/86 | 37.67 | 932.47 | 10/05/89 | 45.97 | 924.17 | | 12/01/86 | 40.68 | 929.46 | 10/25/89 | 46.27 | 923.87 | | 12/02/86 | 40.63 | 929.51 | 11/29/89 | 45.98 | 924.16 | | 01/07/87 | 43.24 | 926.90 | 01/03/90 | 45.49 | 924.65 | | 01/29/87 | 43.97 | 926.17 | 03/29/90 | 43.34 | 926.80 | | 03/03/87 | 45.60 | 924.54 | 04/23/90 | 42.63 | 927.51 | | 03/25/87 | 46.38 | 923.76 | 05/21/90 | 60.62 | 909.52 | | 05/13/87 | 47.68 | 922.46 | 06/13/90 | 42.32 | 927.82 | 133-047-20AAD1 LS Elev (msl,ft)=969.02 Wahpeton Buried Valley Aguifer SI (ft.)=195-200 | Wahpeton | Buried Valley | Aguifer | | SI (f | t.)=195-200 | |----------|---------------|-----------|----------|------------|-------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 09/06/85 | 55.87 | 913.15 | 03/03/87 | 80.12 | 888.90 | | 09/09/85 | 56.10 | 912.92 | 05/14/87 | 63.56 | 905.46 | | 09/10/85 | 53.72 | 915.30 | 07/03/87 | 63.09 | 905.93 | | 09/11/85 | 54.12 | 914.90 | 08/04/87 | 60.64 | 908.38 | | 09/12/85 | 52.68 | 916.34 | 08/31/87 | 64.80 | 904.22 | | 09/18/85 | 52.43 | 916.59 | 11/30/87 | 56.46 | 912.56 | | 09/25/85 | 54.51 | 914.51 | | | | | 10/03/85 | 54.50 | 914.52 | 02/11/88 | 57.10 | 911.92 | | 10/09/85 | 55.32 | 913.70 | 04/22/88 | 56.42 | 912.60 | | 10/15/85 | 54.39 | 914.63 | 06/23/88 | 68.59 | 900.43 | | 10/17/85 | 51.50 | 917.52 | 06/30/88 | 69.47 | 899.55 | | 10/23/85 | 55.50 | 913.52 | 07/27/88 | 67.98 | 901.04 | | 10/24/85 | 51.90 | 917.12 | 08/23/88 | 60.88 | 908.14 | | 11/01/85 | 52.18 | 916.84 | 09/30/88 | 60.84 | 908.18 | | 11/13/85 | 51.07 | 917.95 | 10/27/88 | 58.08 | 910.94 | | 12/10/85 | 51.23 | 917.79 | 11/30/88 | 56.34 | 912.68 | | 12/11/85 | 51.10 | 917.92 | | | | | | | | 01/04/89 | 57.29 | 911.73 | | 04/10/86 | 52.68 | 916.34 | 02/16/89 | 56.70 | 912.32 | | 05/15/86 | 52.34 | 916.68 | 03/16/89 | 56.96 | 912.06 | | 09/30/86 | 56.35 | 912.67 | 04/19/89 | 59.47 | 909.55 | | 10/07/86 | 54.02 | 915.00 | 05/17/89 | 66.34 | 902.68 | | 10/08/86 | 54.04 | 914.98 | 06/21/89 | 62.89 | 906.13 | | 10/09/86 | 53.83 | 915.19 | 07/19/89 | 68.07 | 900.95 | | 10/10/86 | 53.28 | 915.74 | 08/15/89 | 69.73 | 899.29 | | 10/11/86 | 53.00 | 916.02 | 10/05/89 | 59.35 | 909.67 | | 10/15/86 | 53.32 | 915.70 | 10/25/89 | 58.89 | 910.13 | | 10/28/86 | 53.65 | 915.37 | 11/29/89 | 57.77 | 911.25 | | 11/04/86 | 73.15 | 895.87 | | | | | 12/01/86 | 74.53 | 894.49 | 01/03/90 | 58.34 | 910.68 | | 12/02/86 | 74.11 | 894.91 | 03/30/90 | 56.03 | 912.99 | | | | | 04/23/90 | 60.83 | 908.19 | | 01/07/87 | 78.39 | 890.63 | 05/21/90 | 60.75 | 908.27 | | 01/29/87 | 72.73 | 896.29 | 06/13/90 | 61.48 | 907.54 | 133-047-20AAD2 LS Elev (msl, ft) = 969.28 | Wahpeton | Sand Plain Act | uifer | | SI (f | 1.)=129-134 | |----------|----------------|-----------|----------|------------|-------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 09/06/85 | 56.17 | 913.11 | 05/14/87 | 63.75 | 905.53 | | 09/10/85 | 54.04 | 915.24 | 07/03/87 | 63.32 | 905.96 | | 09/11/85 | 54.37 | 914.91 | 08/04/87 | 60.87 | 908.41 | | 09/12/85 | 52.90 | 916.38 | 08/31/87 | 65.02 | 904.26 | | 09/18/85 | 52.64 | 916.64 | 11/30/87 | 56.66 | 912.62 | | 09/25/85 | 54.72 | 914.56 | | | | | 10/03/85 | 54.71 | 914.57 | 02/11/88 | 57.30 | 911.98 | | 10/09/85 | 55.54 | 913.74 | 04/22/88 | 56.59 | 912.69 | | 10/15/85 | 54.58 | 914.70 | 06/23/88 | 68.76 | 900.52 | | 10/17/85 | 51.73 | 917.55 | 06/30/88 | 69.64 | 899.64 | | 10/23/85 | 55.72 | 913.56 | 07/27/88 | 68.14 | 901.14 | | 10/24/85 | 52.13 | 917.15 | 08/23/88 | 61.05 | 908.23 | | 11/01/85 | 52.40 | 916.88 | 09/30/88 | 61.05 | 908.23 | | 11/13/85 | 51.29 | 917.99 | 10/27/88 | 58.26 | 911.02 | | 12/10/85 | 51.45 | 917.83 | 11/30/88 | 56.54 | 912.74 | | 12/11/85 | 51.34 | 917.94 | | | | | | | | 01/04/89 | 57.44 | 911.84 | | 04/10/86 | 52.90 | 916.38 | 02/16/89 | 56.87 | 912.41 | | 05/15/86 | 52.54 | 916.74 | 03/16/89 | 57.14 | 912.14 | | 09/30/86 | 56.58 | 912.70 | 04/19/89 | 59.61 | 909.67 | | 10/07/86 | 54.24 | 915.04 | 05/17/89 | 66.48 | 902.80 | | 10/08/86 | 54.16 | 915.12 | 06/21/89 | 63.02 | 906.26 | | 10/09/86 | 54.07 | 915.21 | 07/19/89 | 68.25 | 901.03 | | 10/10/86 | 53.50 | 915.78 | 08/15/89 | 69.85 | 899.43 | | 10/11/86 | 53.23 | 916.05 | 10/05/89 | 59.49 | 909.79 | | 10/15/86 | 53.53 | 915.75 | 10/25/89 | 59.01 | 910.27 | | 10/28/86 | 53.87 | 915.41 | 11/29/89 | 57.90 | 911.38 | | 11/04/86 | 73.34 | 895.94 | | | | | 12/01/86 | 74.73 | 894.55 | 01/03/90 | 58.51 | 910.77 | | 12/02/86 | 74.31 | 894.97 | 03/30/90 | 56.19 | 913.09 | | | * | | 04/23/90 | 61.01 | 908.27 | | 01/07/87 | 78.62 | 890.66 | 05/21/90 | 60.91 | 908.37 | | 01/29/87 | 72.93 | 896.35 | 06/13/90 | 61.65 | 907.63 | | 03/03/87 | 80.34 | 888.94 | | | | | | | | | | | 133-047-20AAD3 LS Elev (msl,ft)=969.44 Wahpeton Shallow Sand Aquifer SI (ft.)=54-59 | wantecon | Depth to | WL Elev | * | Depth to | (ft.)=54-59
WL Elev | |----------|------------|-----------|----------|------------|------------------------| | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | | (mb1, 10, | | | | | 09/06/85 | 31.50 | 937.94 | 07/03/87 | 46.77 | 922.67 | | 09/09/85 | 31.53 | 937.91 | 08/04/87 | 47.97 | 921.47 | | 09/10/85 | 31.65 | 937.79 | 08/31/87 | 48.45 | 920.99 | | 09/11/85 | 31.68 | 937.76 | 10/02/87 | 49.79 | 919.65 | | 09/12/85 | 31.48 | 937.96 | 10/12/87 | 49.26 | 920.18 | | 09/18/85 | 31.46 | 937.98 | 10/20/87 | 49.73 | 919.71 | | 09/25/85 | 31.69 | 937.75 | 11/02/87 | 49.15 | 920.29 | | 10/03/85 | 31.18 | 938.26 | 11/17/87 | 49.07 | 920.37 | | 10/09/85 | 31.75 | 937.69 | 11/30/87 | 48.42 | 921.02 | | 10/15/85 | 31.57 | 937.87 | | | | | 10/17/85 | 31.09 | 938.35 | 02/11/88 | 47.32 | 922.12 | | 10/23/85 | 31.25 | 938.19 | 04/22/88 | 46.82 | 922.62 | | 10/24/85 | 31.60 | 937.84 | 06/23/88 | 46.65 | 922.79 | | 11/01/85 | 31.32 | 938.12 | 06/30/88 | 46.65 | 922.79 | | 11/13/85 | 31.57 | 937.87 | 07/27/88 | 47.07 | 922.37 | | 12/10/85 | 31.61 | 937.83 | 08/23/88 | 48.06 | 921.38 | | 12/11/85 | 31.46 | 937.98 | 09/30/88 | 49.43 | 920.01 | | | | | 10/27/88 | 48.81 | 920.63 | | 04/10/86 | 30.28 | 939.16 | 11/30/88 | 48.74 | 920.70 | | 05/15/86 | 29.45 | 939.99 | | | | | 09/30/86 | 29.94 | 939.50 | 01/04/89 | 47.92 | 921.52 | | 10/08/86 | 30.21 | 939.23 |
02/16/89 | 48.72 | 920.72 | | 10/09/86 | 30.64 | 938.80 | 03/16/89 | 47.20 | 922.24 | | 10/10/86 | 30.32 | 939.12 | 04/19/89 | 44.79 | 924.65 | | 10/11/86 | 30.91 | 938.53 | 05/17/89 | 43.79 | 925.65 | | 10/15/86 | 31.81 | 937.63 | 06/21/89 | 42.67 | 926.77 | | 10/20/86 | 32.38 | 937.06 | 07/19/89 | 42.32 | 927.12 | | 10/28/86 | 32.17 | 937.27 | 08/15/89 | 41.73 | 927.71 | | 11/04/86 | 33.39 | 936.05 | 10/05/89 | 42.24 | 927.20 | | 12/01/86 | 35.78 | 933.66 | 10/25/89 | 42.74 | 926.70 | | 12/02/86 | 35.52 | 933.92 | 11/29/89 | 42.28 | 927.16 | | 01/07/87 | 38.74 | 930.70 | 01/03/90 | 41.35 | 928.09 | | 01/29/87 | 39.42 | 930.02 | 03/29/90 | 40.06 | 929.38 | | 03/03/87 | 41.73 | 927.71 | 04/23/90 | 39.26 | 930.18 | | 03/24/87 | 42.50 | 926.94 | 05/21/90 | 39.75 | 929.69 | | 03/25/87 | 44.38 | 925.06 | 06/13/90 | 39.32 | 930.12 | | 03/23/01 | | | | | | | 1 | - | - | | | | - | | - | ^ | - | - | ~ | 4 | |---|----|----|---|---|---|---|---|---|---|---|---|---|---| | - | .3 | .3 | - | u | 4 | | - | 4 | u | ж | | | _ | | Wahpeton Buried Valley Aguifer SI (ft.)=265- | | | | | | |--|------------|-----------|------------|------------|-----------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | | | 06.422.400 | 71 65 | 902.36 | | 04/10/86 | | 915.62 | 06/23/88 | 71.65 | | | 05/15/86 | 56.54 | 917.47 | 06/30/88 | 72.87 | 901.14 | | 08/27/86 | 70.01 | 904.00 | 07/27/88 | 70.52 | 903.49 | | 09/30/86 | 59.51 | 914.50 | 08/24/88 | 65.87 | 908.14 | | 10/08/86 | 57.93 | 916.08 | 09/30/88 | 65.17 | 908.84 | | 10/09/86 | 57.84 | 916.17 | 10/27/88 | 64.04 | 909.97 | | 10/10/86 | 57.31 | 916.70 | 11/30/88 | 62.30 | 911.71 | | 10/11/86 | 57.11 | 916.90 | | | | | 10/15/86 | 57.37 | 916.64 | 01/05/89 | 62.10 | 911.91 | | 10/28/86 | 58.28 | 915.73 | 02/16/89 | 61.74 | 912.27 | | 11/04/86 | 77.51 | 896.50 | 03/16/89 | 62.85 | 911.16 | | 12/01/86 | 81.52 | 892.49 | 04/19/89 | 63.30 | 910.71 | | 12/02/86 | 79.86 | 894.15 | 05/17/89 | 72.99 | 901.02 | | ,, | | | 06/21/89 | 68.58 | 905.43 | | 01/07/87 | 81.90 | 892.11 | 07/19/89 | 72.73 | 901.28 | | 01/29/87 | 78.37 | 895.64 | 08/15/89 | 72.38 | 901.63 | | 03/03/87 | 84.18 | 889.83 | 10/05/89 | 65.10 | 908.91 | | 03/24/87 | 85.76 | 888.25 | 10/25/89 | 63.77 | 910.24 | | 05/14/87 | 67.94 | 906.07 | 11/29/89 | 63.07 | 910.94 | | 07/03/87 | 69.58 | 904.43 | | | | | 08/04/87 | 66.26 | 907.75 | 01/03/90 | 61.71 | 912.30 | | 09/01/87 | 66.36 | 907.65 | 03/30/90 | 60.89 | 913.12 | | 11/03/87 | 62.86 | 911.15 | 04/23/90 | 64.69 | 909.32 | | 12/01/87 | 61.77 | 912.24 | 05/21/90 | 63.40 | 910.61 | | 12, 51, 51 | | | 06/14/90 | 67.63 | 906.38 | | 04/22/88 | 61.64 | 912.37 | | | | ### 133-047-20ABAC2 | 133-047-2 | 20ABAC2
Sand Plain Act | vifor | | LS Elev (msl,ft)=974.06
SI (ft.)=118-123 | | | |------------|---------------------------|---------------|----------|---|-----------|--| | Manbecon 1 | Depth to | WL Elev | | Depth to | WL Elev | | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | Date | water (It) | (msi, ic) | | | | | | 04/10/86 | 58.41 | 915.65 | 06/23/88 | 71.69 | 902.37 | | | 05/15/86 | 56.58 | 917.48 | 06/30/88 | 72.91 | 901.15 | | | 08/27/86 | 70.06 | 904.00 | 07/27/88 | 70.51 | 903.55 | | | 09/30/86 | 59.54 | 914.52 | 08/24/88 | 65.87 | 908.19 | | | 10/08/86 | 57.98 | 916.08 | 09/30/88 | 65.25 | 908.81 | | | 10/09/86 | 57.88 | 916.18 | 10/27/88 | 64.03 | 910.03 | | | 10/10/86 | 57.39 | 916.67 | 11/30/88 | 62.33 | 911.73 | | | 10/11/86 | 57.15 | 916.91 | | | | | | 10/15/86 | 57.41 | 916.65 | 01/05/89 | 62.21 | 911.85 | | | 10/28/86 | 58.31 | 915.75 | 02/16/89 | 62.78 | 911.28 | | | 11/04/86 | 77.55 | 896.51 | 03/16/89 | 62.87 | 911.19 | | | 12/01/86 | 81.54 | 892.52 | 04/19/89 | 63.36 | 910.70 | | | 12/02/86 | 79.89 | 894.17 | 05/17/89 | 73.04 | 901.02 | | | | | | 06/21/89 | 68.61 | 905.45 | | | 01/07/87 | 81.95 | 892.11 | 07/19/89 | 72.76 | 901.30 | | | 01/29/87 | 78.40 | 895.66 | 08/15/89 | 72.46 | 901.60 | | | 03/03/87 | 84.22 | 889.84 | 10/05/89 | 65.12 | 908.94 | | | 03/24/87 | 85.79 | 888.27 | 10/25/89 | 63.79 | 910.27 | | | 05/14/87 | 67.98 | 906.08 | 11/29/89 | 63.11 | 910.95 | | | 07/03/87 | 69.63 | 904.43 | | | | | | 08/04/87 | 66.23 | 907.83 | 01/03/90 | 61.71 | 912.35 | | | 09/01/87 | 66.47 | 907.59 | 03/30/90 | 60.90 | 913.16 | | | 11/03/87 | 62.85 | 911.21 | 04/23/90 | 64.71 | 909.35 | | | 12/01/87 | 61.75 | 912.31 | 05/21/90 | 63.21 | 910.85 | | | | | CA BLOCK BOOK | 06/14/90 | 67.64 | 906.42 | | | 04/22/88 | 61.67 | 912.39 | | | | | 133-047-20ABAC4 | LS Elev | (ms] ft | 1-973 99 | |---------|---------|----------| | | | | | Wahpeton Shallow Sand Aguifer | | | | SI | I (ft.) = 38 - 48 | | |-------------------------------|------------------------|----------------------|----------|------------------------|-------------------|--| | Date | Depth to
Water (ft) | WL Elev
(msl, ft) | Date | Depth to
Water (ft) | WL Elev (msl, ft) | | | 04/10/86 | 36.65 | 937.34 | | | | | | 05/15/86 | 36.19 | 937.80 | 01/07/87 | 45.23 | 928.76 | | | 08/27/86 | 36.25 | 937.74 | 01/29/87 | 45.40 | 928.59 | | | 09/30/86 | 36.20 | 937.79 | 03/03/87 | 45.89 | 928.10 | | | 10/08/86 | 36.26 | 937.73 | 03/24/87 | 46.65 | 927.34 | | | 10/09/86 | 37.19 | 936.80 | 05/13/87 | 47.20 | 926.79 | | | 10/10/86 | 37.48 | 936.51 | 07/03/87 | 47.48 | 926.51 | | | 10/11/86 | 38.40 | 935.59 | 08/04/87 | 47.62 | 926.37 | | | 10/15/86 | 40.12 | 933.87 | | | | | | 10/20/86 | 41.49 | 932.50 | 03/29/90 | 45.70 | 928.29 | | | 10/28/86 | 39.55 | 934.44 | 04/23/90 | 45.17 | 928.82 | | | 11/04/86 | 42.46 | 931.53 | 05/21/90 | 45.03 | 928.96 | | | 12/01/86 | 44.45 | 929.54 | 06/14/90 | 44.92 | 929.07 | | | 12/02/86 | 44.41 | 929.58 | | | | | | 1 | 3 | Э. | _ຄ | 47 | -2 | n | 22 | ٦ | |---|---|----|----|----|----|---|----|---| | Wahpeton E | Buried Vallev | Aquifer | 8 10 10 10 10 10 10 10 10 10 10 10 10 10 | SI (ft |)=178-184 | |--------------------------|---------------|-----------|--|------------|-----------| | 34 300 3234 2330 3002 31 | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | | | | | | | 11/18/69 | 7.65 | 956.99 | 04/04/77 | 31.93 | 932.71 | | | | | 06/07/77 | 34.50 | 930.14 | | 02/26/70 | 7.35 | 957.29 | 07/07/77 | 29.85 | 934.79 | | | | | 08/10/77 | 30.22 | 934.42 | | 02/08/71 | 8.30 | 956.34 | 09/15/77 | 29.41 | 935.23 | | 07/20/71 | 8.13 | 956.51 | | | | | 08/30/71 | 8.23 | 956.41 | 06/22/78 | 31.22 | 933.42 | | 00 (00 (72 | 12.20 | 051 24 | 00/17/00 | 40.70 | 001 01 | | 08/28/73 | 13.30 | 951.34 | 09/17/80 | 42.73 | 921.91 | | 09/20/73 | 9.55 | 955.09 | 00/25/05 | 40 50 | 016 13 | | 12/18/73 | 8.75 | 955.89 | 09/25/85 | 48.52 | 916.12 | | 06/40/74 | 0.54 | 056.00 | 10/03/85 | 48.16 | 916.48 | | 06/19/74 | 8.64 | 956.00 | 10/09/85 | 48.53 | 916.11 | | 06/20/74 | 8.52 | 956.12 | 10/15/85 | 48.79 | 915.85 | | 07/18/74 | 36.15 | 928.49 | 10/23/85 | 48.56 | 916.08 | | 07/29/74 | 44.96 | 919.68 | 10/24/85 | 47.38 | 917.26 | | 08/01/74 | 43.63 | 921.01 | 11/01/85 | 47.48 | 917.16 | | 08/05/74 | 42.92 | 921.72 | 11/13/85 | 47.17 | 917.47 | | 08/09/74 | 30.15 | 934.49 | 12/10/85 | 46.73 | 917.91 | | 08/14/74 | 19.65 | 944.99 | 12/11/85 | 47.38 | 917.26 | | 08/20/74 | 20.80 | 943.84 | | | | | 08/27/74 | 19.01 | 945.63 | 04/10/86 | 49.50 | 915.14 | | 09/05/74 | 17.33 | 947.31 | 09/30/86 | 49.02 | 915.62 | | 09/14/74 | 16.54 | 948.10 | 10/08/86 | 48.03 | 916.61 | | 09/17/74 | 16.52 | 948.12 | 10/10/86 | 47.34 | 917.30 | | 09/24/74 | 14.74 | 949.90 | 10/11/86 | 47.27 | 917.37 | | 10/03/74 | 17.34 | 947.30 | 10/15/86 | 47.29 | 917.35 | | 10/04/74 | 17.27 | 947.37 | 10/28/86 | 48.68 | 915.96 | | 10/05/74 | 22.44 | 942.20 | 11/04/86 | 64.79 | 899.85 | | 10/09/74 | 28.34 | 936.30 | 12/01/86 | 70.42 | 894.22 | | 10/16/74 | 42.04 | 922.60 | 12/02/86 | 68.34 | 896.30 | | 10/22/74 | 46.75 | 917.89 | | | | | 10/23/74 | 47.44 | 917.20 | 01/07/87 | 70.36 | 894.28 | | 10/30/74 | 41.83 | 922.81 | 01/29/87 | 67.40 | 897.24 | | 11/06/74 | 44.90 | 919.74 | 03/03/87 | 72.67 | 891.97 | | 11/18/74 | 34.08 | 930.56 | 03/24/87 | 75.25 | 889.39 | | 12/03/74 | 33.80 | 930.84 | 07/03/87 | 60.47 | 904.17 | | | | | 08/04/87 | 56.42 | 908.22 | | 01/22/75 | 32.31 | 932.33 | 08/31/87 | 57.31 | 907.33 | | 02/25/75 | 33.74 | 930.90 | 10/02/87 | 54.93 | 909.71 | | 06/03/75 | 17.42 | 947.22 | 11/02/87 | 54.59 | 910.05 | | 07/15/75 | 12.75 | 951.89 | 11/30/87 | 53.63 | 911.01 | | 08/25/75 | 31.54 | 933.10 | | | | | 09/07/75 | 18.28 | 946.36 | 04/22/88 | 52.51 | 912.13 | | 12/02/75 | 39.22 | 925.42 | 06/23/88 | 61.42 | 903.22 | | | | | 06/30/88 | 61.63 | 903.01 | | 01/22/76 | 17.90 | 946.74 | 07/27/88 | 59.59 | 905.05 | | 04/09/76 | 13.53 | 951.11 | 08/23/88 | 57.99 | 906.65 | | 06/03/76 | 26.28 | 938.36 | 09/30/88 | 54.88 | 909.76 | | 06/17/76 | 25.21 | 939.43 | 10/27/88 | 55.50 | 909.14 | | 06/30/76 | 25.72 | 938.92 | 11/30/88 | 52.76 | 911.88 | | 07/21/76 | 30.75 | 933.89 | | | | | 08/11/76 | 43.70 | 920.94 | 01/04/89 | 54.54 | 910.10 | | 08/24/76 | 43.74 | 920.90 | 02/15/89 | 52.97 | 911.67 | | 09/13/76 | 40.20 | 924.44 | 03/16/89 | 53.09 | 911.55 | | 09/28/76 | 38.92 | 925.72 | 04/19/89 | 52.85 | 911.79 | | 11/02/76 | 33.10 | 931.54 | 05/17/89 | 61.76 | 902.88 | | 12/07/76 | 37.55 | 927.09 | 06/21/89 | 58.42 | 906.22 | | | | | 07/19/89 | 62.43 | 902.21 | | 01/04/77 | 38.70 | 925.94 | 08/15/89 | 61.85 | 902.79 | | | | | | | | | 133-047-2
Wahpeton | 20ABB
Buried Vallev | (Continued) Aguifer | | LS Elev (msl
SI (f | ,ft)=964.64
t.}=178-184 | |-----------------------|------------------------|---------------------|--|-----------------------|----------------------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 10/05/89 | 56.84 | 907.80 |
03/30/90 | 51.51 | 913.13 | | 10/25/89 | 53.39 | 911.25 | 04/23/90 | 54.53 | 910.11 | | 12/01/89 | 52.18 | 912.46 | 05/21/90
06/13/90 | 53.84
58.95 | 910.80
905.69 | | 01/03/90 | 52.47 | 912.17 | 00/13/90 | 30.73 | 703.09 | | 133-047- | 20ABBA1 | | | LS Elev (msl | .ft)=975.36 | | Wahpeton | Buried Valley | Aguifer | | | t.) = 266 - 271 | | | Depth to | WL Elev | N 100 100 100 100 100 100 100 100 100 10 | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 04/10/86 | 60.02 | 915.34 | 02/11/88 | 63.59 | 911.77 | | 05/15/86 | 57.74 | 917.62 | 04/22/88 | 63.09 | 912.27 | | 08/27/86 | 71.28 | 904.08 | 06/23/88 | 72.39 | 902.97 | | 09/30/86 | 60.40 | 914.96 | 06/30/88 | 73.49 | 901.87 | | 10/08/86 | 59.09 | 916.27 | 07/27/88 | 71.25 | 904.11 | | 10/09/86 | 59.00 | 916.36 | 08/24/88 | 66.76 | 908.60 | | 10/10/86 | 58.50 | 916.86 | 09/30/88 | 66.32 | 909.04 | | 10/11/86 | 58.30 | 917.06 | 10/27/88 | 65.56 | 909.80 | | 10/15/86 | 58.46 | 916.90 | 11/30/88 | 64.09 | 911.27 | | 10/28/86 | 59.48 | 915.88 | | | | | 11/04/86 | 77.31 | 898.05 | 01/05/89 | 63.54 | 911.82 | | 12/01/86 | 82.23 | 893.13 | 02/16/89 | 64.59 | 910.77 | | 12/02/86 | 80.07 | 895.29 | 03/16/89 | 64.62 | 910.74 | | | | | 04/19/89 | 64.39 | 910.97 | | 01/07/87 | 81.89 | 893.47 | 05/17/89 | 73.68 | 901.68 | | 01/29/87 | 78.89 | 896.47 | 06/21/89 | 69.73 | 905.63 | | 03/03/87 | 84.16 | 891.20 | 07/19/89 | 73.81 | 901.55 | | 03/24/87 | 85.98 | 889.38 | 08/15/89 | 73.26 | 902.10 | | 05/14/87 | 69.15 | 906.21 | 10/05/89 | 66.86 | 908.50 | | 07/03/87 | 71.06 | 904.30 | 10/25/89 | 64.96 | 910.40 | | 08/04/87 | 67.91 | 907.45 | 11/29/89 | 64.18 | 911.18 | | 09/01/87 | 67.49 | 907.87 | | | | | 10/02/87 | 65.64 | 909.72 | 01/03/90 | 63.04 | 912.32 | | 10/12/87 | 66.18 | 909.18 | 03/30/90 | 62.30 | 913.06 | | 10/20/87 | 65.26 | 910.10 | 04/23/90 | 65.71 | 909.65 | | 11/03/87 | 64.06 | 911.30 | 05/21/90 | 64.63 | 910.73 | | 12/01/87 | 62.96 | 912.40 | 06/14/90 | 69.23 | 906.13 | | 133-047-20ABBA2 Wahpeton Sand Plain Aguifer | | | | LS Elev (msl,ft)=975.56
SI (ft.)=118-123 | | | |---|------------|-----------|---|---|-----------|--| | | Depth to | WL Elev | 10 1 100 100 100 100 100 100 100 100 10 | Depth to | WL Elev | | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (ms), ft) | | | 190 | Depth to | WL Elev | | Depth to | WL Elev | |----------|------------|-----------|----------|------------|-----------| | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 04/10/86 | 60.19 | 915.37 | 02/11/88 | 63.76 | 911.80 | | 05/15/86 | 57.88 | 917.68 | 04/22/88 | 63.23 | 912.33 | | 08/27/86 | 71.40 | 904.16 | 06/23/88 | 72.51 | 903.05 | | 09/30/86 | 60.58 | 914.98 | 06/30/88 | 73.62 | 901.94 | | 10/08/86 | 59.24 | 916.32 | 07/27/88 | 71.39 | 904.17 | | 10/09/86 | 59.13 | 916.43 | 08/24/88 | 66.89 | 908.67 | | 10/10/86 | 58.69 | 916.87 | 09/30/88 | 66.47 | 909.09 | | 10/11/86 | 58.45 | 917.11 | 10/27/88 | 65.73 | 909.83 | | 10/15/86 | 58.60 | 916.96 | 11/30/88 | 64.20 | 911.36 | | 10/28/86 | 59.64 | 915.92 | | | | | 11/04/86 | 77.44 | 898.12 | 01/05/89 | 63.67 | 911.89 | | 12/01/86 | 82.35 | 893.21 | 02/16/89 | 64.70 | 910.86 | | 12/02/86 | 80.24 | 895.32 | 03/16/89 | 64.72 | 910.84 | | | | | 04/19/89 | 64.51 | 911.05 | | 01/07/87 | 82.01 | 893.55 | 05/17/89 | 73.77 | 901.79 | | 01/29/87 | 79.06 | 896.50 | 06/21/89 | 69.87 | 905.69 | | 03/03/87 | 84.33 | 891.23 | 07/19/89 | 73.91 | 901.65 | | 03/24/87 | 86.13 | 889.43 | 08/15/89 | 73.42 | 902.14 | | 05/14/87 | 69.30 | 906.26 | 10/05/89 | 67.00 | 908.56 | | 07/03/87 | 71.17 | 904.39 | 10/25/89 | 65.10 | 910.46 | | 08/04/87 | 68.04 | 907.52 | 11/29/89 | 64.36 | 911.20 | | 09/01/87 | 67.61 | 907.95 | | | | | 10/02/87 | 65.75 | 909.81 | 01/03/90 | 62.88 | 912.68 | | 10/12/87 | 66.25 | 909.31 | 03/30/90 | 62.43 | 913.13 | | 10/20/87 | 65.42 | 910.14 | 04/23/90 | 65.84 | 909.72 | | 11/03/87 | 64.16 | 911.40 | 05/21/90 | 64.74 | 910.82 | | 12/01/87 | 63.08 | 912.48 | 06/14/90 | 69.32 | 906.24 | 133-047-20ABBA3 LS Elev (msl,ft)=976.07 Wahpeton Shallow Sand Aguifer SI (ft)=43-53 | Wahpeton | Shallow Sand | Aguifer | | SI | (ft.)=43-53 | |----------|--------------|-----------|----------|------------|-------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 04/10/86 | 37.97 | 938.10 | | | | | 05/15/86 | 37.41 | 938.66 | 02/11/88 | 42.17 | 933.90 | | 08/27/86 | 37.36 | 938.71 | 04/22/88 | 42.68 | 933.39 | | 09/30/86 | 36.29 | 939.78 | 06/23/88 | 42.83 | 933.24 | | 10/08/86 | 35.91 | 940.16 | 06/30/88 | 42.90 | 933.17 | | 10/09/86 | 35.94 | 940.13 | 07/27/88 | 42.94 | 933.13 | | 10/10/86 | 35.34 | 940.73 | 08/24/88 | 42.60 | 933.47 | | 10/11/86 | 35.55 | 940.52 | 09/30/88 | 42.03 | 934.04 | | 10/15/86 | 35.69 | 940.38 | 10/27/88 | 41.78 | 934.29 | | 10/20/86 | 35.69 | 940.38 | 11/30/88 | 42.46 | 933.61 | | 10/28/86 | 35.71 | 940.36 | | | × | | 11/04/86 | 35.75 | 940.32 | 01/05/89 | 42.70 | 933.37 | | 12/01/86 | 36.67 | 939.40 | 02/16/89 | 42.98 | 933.09 | | 12/02/86 | 36.63 | 939.44 | 03/16/89 | 43.14 | 932.93 | | | | | 04/19/89 | 42.76 | 933.31 | | 01/07/87 | 38.94 | 937.13 | 05/17/89 | 42.57 | 933.50 | | 01/29/87 | 39.34 | 936.73 | 06/21/89 | 42.46 | 933.61 | | 03/03/87 | 40.13 | 935.94 | 07/19/89 | 42.56 | 933.51 | | 03/24/87 | 40.24 | 935.83 | 08/15/89 | 42.51 | 933.56 | | 05/13/87 | 40.89 | 935.18 | 10/05/89 | 42.61 | 933.46 | | 07/03/87 | 41.58 | 934.49 | 10/25/89 | 42.63 | 933.44 | | 08/04/87 | 41.91 | 934.16 | 11/29/89 | 42.83 | 933.24 | | 09/01/87 | 41.99 | 934.08 | | | | | 10/02/87 | 41.46 | 934.61 | 01/03/90 | 43.13 | 932.94 | | 10/12/87 | 40.74 | 935.33 | 03/29/90 | 43.18 | 932.89 | | 10/20/87 | 40.75 | 935.32 | 04/23/90 | 43.28 | 932.79 | | 11/02/87 | 40.61 | 935.46 | 05/21/90 | 43.42 | 932.65 | | 11/17/87 | 40.91 | 935.16 | 06/14/90 | 43.60 | 932.47 | | 12/01/87 | 41.33 | 934.74 | | | | | 133-047-20ABCA1 | LS Elev $(msl,ft)=974.66$ | |-------------------------------|---------------------------| | Wahnoton Challow Cond Aguifor | CT (55) FO CO | | 71441000011 | DIGITOR Dana | MARKET | | | 110.7=30-00 | |-------------|------------------------|-------------------|---------------------|------------------------|-------------------| | Date | Depth to
Water (ft) | WL Elev (msl, ft) | Date | Depth to
Water (ft) | WL Elev (msl, ft) | | * | | | | | | | 04/10/86 | 37.27 | 937.39 | 03/03/87 | 55.44 | 919.22 | | 05/15/86 | 36.83 | 937.83 | 03/24/87 | 57.54 | 917.12 | | 08/27/86 | 36.76 | 937.90 | | | | | 09/30/86 | 36.73 | 937.93 | 04/19/89 | 52.40 | 922.26 | | 10/08/86 | 36.77 | 937.89 | 05/17/89 | 51.38 | 923.28 | | 10/09/86 | 37.25 | 937.41 | 06/21/89 | 49.90 | 924.76 | | 10/10/86 | 37.34 | 937.32 | 07/19/89 | 49.45 | 925.21 | | 10/11/86 | 38.03 | 936.63 | 08/15/89 | 48.80 | 925.86 | | 10/15/86 | 39.32 | 935.34 | 10/05/89 | 52.23 | 922.43 | | 10/20/86 | 40.62 | 934.04 | 10/25/89 | 52.26 | 922.40 | | 10/28/86 | 39.79 | 934.87 | 11/29/89 | 49.96 | 924.70 | | 11/04/86 | 41.71 | 932.95 | | | | | 12/01/86 | 45.70 | 928.96 | 01/03/90 | 49.02 | 925.64 | | 12/02/86 | 45.78 | 928.88 | 03/29/90 | 47.17 | 927.49 | | | | | 04/23/90 | 46.73 | 927.93 | | 01/07/87 | 49.98 | 924.68 | 05/21/90 | 46.72 | 927.94 | | 01/29/87 | 52.00 | 922.66 | 06/14/90 | 46.71 | 927.95 | | | | 2 | 2.2 (10.2) (10.2) | | | 133-047-20ABCA2 LS Elev (msl,ft)=974.45 Wahpeton Sand Plain Aguifer SI (ft.)=118-122 | Wahpeton Sand Plain Aguifer | | | SI (ft.)=118-122 | | | |-----------------------------|------------|-----------|------------------|------------|-----------| | . 18 | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 04/10/86 | 58.92 | 915.53 | 06/23/88 | 71.62 | 902.83 | | 05/15/86 | 56.91 | 917.54 | 06/30/88 | 72.85 | 901.60 | | 08/27/86 | 70.37 | 904.08 | 07/27/88 | 70.53 | 903.92 | | 09/30/86 | 59.69 | 914.76 | 08/24/88 | 65.75 | 908.70 | | 10/08/86 | 58.23 | 916.22 | 09/30/88 | 65.48 | 908.97 | | 10/09/86 | 58.12 | 916.33 | 10/27/88 | 64.45 | 910.00 | | 10/10/86 | 57.65 | 916.80 | 11/30/88 | 62.98 | 911.47 | | 10/11/86 | 57.41 | 917.04 | | | | | 10/15/86 | 57.70 | 916.75 | 01/05/89 | 62.68 | 911.77 | | 10/28/86 | 58.67 | 915.78 | 02/16/89 | 63.50 | 910.95 | | 11/04/86 | 76.92 | 897.53 | 03/16/89 | 63.30 | 911.15 | | 12/01/86 | 81.47 | 892.98 | 04/19/89 | 63.59 | 910.86 | | 12/02/86 | 79.43 | 895.02 | 05/17/89 | 73.26 | 901.19 | | | | | 06/21/89 | 68.93 | 905.52 | | 01/07/87 | 81.32 | 893.13 | 07/19/89 | 72.81 | 901.64 | | 01/29/87 | 78.08 | 896.37 | 08/15/89 | 72.32 | 902.13 | | 03/03/87 | 83.54 | 890.91 | 10/05/89 | 65.80 | 908.65 | | 03/24/87 | 85.16 | 889.29 | 10/25/89 | 64.15 | 910.30 | | 05/14/87 | 68.19 | 906.26 | 11/29/89 | 63.28 | 911.17 | | 07/03/87 | 70.12 | 904.33 | | | 8 | | 08/04/87 | 66.88 | 907.57 | 01/03/90 | 62.16 | 912.29 | | 09/01/87 | 66.63 | 907.82 | 03/30/90 | 61.28 | 913.17 | | 11/03/87 | 63.22 | 911.23 | 04/23/90 | 64.94 | 909.51 | | 12/01/87 | 62.13 | 912.32 | 05/21/90 | 63.68 | 910.77 | | | | | 06/14/90 | 68.30 | 906.15 | | 04/22/88 | 62.06 | 912.39 | | | | | 133-047- | | | | LS Elev (msl | ,ft)=974.76 | |----------|----------------|-----------|----------|--------------|-------------| | Wahpeton | Buried Vallev | Aquifer | | SI (f | t.)=273-278 | | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 04/10/86 | 59.25 | 915.51 | 06/23/88 | 71.98 | 902.78 | | 05/15/86 | 56.97 | 917.79 | 06/30/88 | 73.22 | 901.54 | | 08/27/86 | 70.70 | 904.06 | 07/27/88 | 70.91 | 903.85 | | 09/30/86 | 60.05 | 914.71 | 08/24/88 | 66.11 | 908.65 | | 10/08/86 | 58.57 | 916.19 | 09/30/88 | 65.87 | 908.89 | | 10/09/86 | 58.45 | 916.31 | 10/27/88 | 64.75 | 910.01 | | 10/10/86 | 57.99 | 916.77 | 11/30/88 | 63.33 | 911.43 | | 10/11/86 | 57.76 | 917.00 | | | | | 10/15/86 |
58.04 | 916.72 | 01/05/89 | 63.27 | 911.49 | | 10/28/86 | 59.00 | 915.76 | 02/16/89 | 63.77 | 910.99 | | 11/04/86 | 77.29 | 897.47 | 03/16/89 | 63.83 | 910.93 | | 12/01/86 | 81.75 | 893.01 | 04/19/89 | 63.95 | 910.81 | | 12/02/86 | 79.72 | 895.04 | 05/17/89 | 73.58 | 901.18 | | | | | 06/21/89 | 69.27 | 905.49 | | 01/07/87 | 81.68 | 893.08 | 07/19/89 | 73.13 | 901.63 | | 01/29/87 | 78.46 | 896.30 | 08/15/89 | 72.64 | 902.12 | | 03/03/87 | 83.90 | 890.86 | 10/05/89 | 66.10 | 908.66 | | 03/24/87 | 85.49 | 889.27 | 10/25/89 | 64.50 | 910.26 | | 05/14/87 | 68.50 | 906.26 | 11/29/89 | 63.61 | 911.15 | | 07/03/87 | 70.44 | 904.32 | | | | | 08/04/87 | 67.23 | 907.53 | 01/03/90 | 62.52 | 912.24 | | 09/01/87 | 67.08 | 907.68 | 03/30/90 | 61.60 | 913.16 | | 11/03/87 | 63.52 | 911.24 | 04/23/90 | 65.29 | 909.47 | | 12/01/87 | 62.52 | 912.24 | 05/21/90 | 64.06 | 910.70 | | | | | 06/14/90 | 68.62 | 906.14 | | 04/22/88 | 62.37 | 912.39 | | | | | 133-047- | 20ABCA4 | | | LS Elev (msl | ft)=982.62 | | Wahpeton | Shallow Sand A | Aguifer | | SI | (ft.)=64-74 | | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 05/17/89 | 59.30 | 923.32 | | | | | 06/21/89 | 57.80 | 924.82 | 01/03/90 | 56.88 | 925.74 | | 07/19/89 | 57.37 | 925.25 | 03/29/90 | 55.03 | 927.59 | | 08/15/89 | 56.72 | 925.90 | 04/23/90 | 54.59 | 928.03 | | 10/05/89 | 61.46 | 921.16 | 05/22/90 | 54.52 | 928.10 | | 10/25/89 | 60.20 | 922.42 | 06/14/90 | 54.63 | 927.99 | | 11/29/89 | 57.81 | 924.81 | | | | | | 20ABCBA1 | | | LS Elev (msl | | | Wanbeton | Shallow Sand A | | | | (ft.)=58-63 | | _ | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 05/17/89 | 59.46 | 923.33 | | | | | 06/21/89 | 58.03 | 924.76 | 01/03/90 | 56.88 | 925.91 | | 07/19/89 | 57.47 | 925.32 | 03/29/90 | 55.24 | 927.55 | | 08/15/89 | 56.87 | 925.92 | 04/23/90 | 54.81 | 927.98 | | 10/05/89 | 59.71 | 923.08 | 05/22/90 | 54.78 | 928.01 | | 10/25/89 | 60.35 | 922.44 | 06/14/90 | 54.78 | 928.01 | | 11/29/89 | 57.93 | 924.86 | | : 14 | | | 133-047-20ABCBB1 | LS Elev $(msl,ft)=982.45$ | |-------------------------------|---------------------------| | Wahneton Shallow Sand Aguifer | OT (5t) CO CE | | wanteron | Shallow Sand | <u>adulier</u> | | SI | (ft.) = 60 - 65 | |----------|--------------|----------------|----------|------------|-----------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | | | | | | | 05/17/89 | 58.51 | 923.94 | | | | | 06/21/89 | 57.78 | 924.67 | 01/03/90 | 56.18 | 926.27 | | 07/19/89 | 57.03 | 925.42 | 03/29/90 | 54.77 | 927.68 | | 08/15/89 | 56.40 | 926.05 | 04/24/90 | 54.52 | 927.93 | | 10/05/89 | 56.84 | 925.61 | 05/22/90 | 54.32 | 928.13 | | 10/25/89 | 58.25 | 924.20 | 06/14/90 | 54.36 | 928.09 | | 11/29/89 | 57.14 | 925.31 | | | | | 133-047-
Wahpeton | 20ABDA1
Buried Vallev | Aquifer | | LS Elev (msl | ,ft)=971.28
ft.)=95-115 | |----------------------|--------------------------|-----------|----------|--------------|----------------------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 09/17/86 | 61.23 | 910.05 | 06/30/88 | 71.54 | 899.74 | | 09/30/86 | 57.53 | 913.75 | 07/27/88 | 68.73 | 902.55 | | 10/08/86 | 55.60 | 915.68 | 08/24/88 | 63.43 | 907.85 | | 10/09/86 | 55.51 | 915.77 | 09/30/88 | 62.78 | 908.50 | | 10/10/86 | 55.06 | 916.22 | 10/27/88 | 60.98 | 910.30 | | 10/11/86 | 54.76 | 916.52 | 11/30/88 | 59.17 | 912.11 | | 10/15/86 | 54.71 | 916.57 | | | | | 10/28/86 | 55.81 | 915.47 | 01/04/89 | 60.04 | 911.24 | | 11/04/86 | 76.65 | 894.63 | 02/16/89 | 59.52 | 911.76 | | 12/01/86 | 79.58 | 891.70 | 03/16/89 | 59.70 | 911.58 | | 12/02/86 | 78.31 | 892.97 | 04/19/89 | 61.04 | 910.24 | | | | | 05/17/89 | 70.75 | 900.53 | | 01/07/87 | 80.98 | 890.30 | 06/21/89 | 66.21 | 905.07 | | 01/29/87 | 75.97 | 895.31 | 07/19/89 | 70.51 | 900.77 | | 03/03/87 | 82.82 | 888.46 | 08/15/89 | 70.32 | 900.96 | | 03/24/87 | 84.01 | 887.27 | 10/05/89 | 61.97 | 909.31 | | 05/14/87 | 65.34 | 905.94 | 10/25/89 | 61.42 | 909.86 | | 07/03/87 | 66.98 | 904.30 | 11/29/89 | 60.09 | 911.19 | | 08/04/87 | 63.24 | 908.04 | | | | | 09/01/87 | 64.07 | 907.21 | 01/03/90 | 59.98 | 911.30 | | 11/03/87 | 60.26 | 911.02 | 03/30/90 | 58.14 | 913.14 | | 12/01/87 | 59.03 | 912.25 | 04/23/90 | 62.52 | 908.76 | | | | | 05/21/90 | 61.01 | 910.27 | | 04/22/88 | 58.75 | 912.53 | 06/14/90 | 65.06 | 906.22 | | 06/23/88 | 70.81 | 900.47 | | | | LS Elev (msl, ft) = 972.01 | 1 | 3 | 3 | _ | 0 | 4 | 7 | _ | 2 | 0 | A | В | D | A | C | 1 | |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | | | | | | | | | | | | | | | | | | Wahpeton | Buried Valley | Aquifer | | SI (f | t.)=175-275 | |----------|---------------|-----------|----------|------------|-------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 10/08/86 | 59.50 | 912.99 | 06/30/88 | 72.14 | 900.35 | | 10/09/86 | 56.69 | 915.80 | 07/27/88 | 69.67 | 902.82 | | 10/10/86 | 56.19 | 916.30 | 08/24/88 | 64.53 | 907.96 | | 10/11/86 | 55.97 | 916.52 | 09/30/88 | 63.86 | 908.63 | | 10/15/86 | 56.31 | 916.18 | 10/27/88 | 62.33 | 910.16 | | 10/28/86 | 57.08 | 915.41 | 11/30/88 | 60.52 | 911.97 | | 11/04/86 | 103.59 | 868.90 | | | | | 12/01/86 | 106.84 | 865.65 | 01/04/89 | 61.26 | 911.23 | | 12/02/86 | 105.44 | 867.05 | 02/16/89 | 60.88 | 911.61 | | | | | 03/16/89 | 61.04 | 911.45 | | 01/07/87 | 107.82 | 864.67 | 04/19/89 | 62.07 | 910.42 | | 01/29/87 | 104.07 | 868.42 | 05/17/89 | 79.44 | 893.05 | | 03/03/87 | 109.24 | 863.25 | 06/21/89 | 67.28 | 905.21 | | 03/24/87 | 109.59 | 862.90 | 07/19/89 | 71.53 | 900.96 | | 05/14/87 | 66.54 | 905.95 | 08/15/89 | 71.65 | 900.84 | | 07/03/87 | 68.08 | 904.41 | 10/05/89 | 63.31 | 909.18 | | 08/04/87 | 64.49 | 908.00 | 10/25/89 | 62.48 | 910.01 | | 09/01/87 | 74.56 | 897.93 | 11/29/89 | 61.22 | 911.27 | | 11/03/87 | 68.17 | 904.32 | | | | | 12/01/87 | 60.07 | 912.42 | 01/03/90 | 60.85 | 911.64 | | | | | 03/30/90 | 59.34 | 913.15 | | 02/11/88 | 60.66 | 911.83 | 04/23/90 | 63.56 | 908.93 | | 04/22/88 | 60.02 | 912.47 | 05/21/90 | 62.18 | 910.31 | | 06/23/88 | 71.65 | 900.84 | 06/14/90 | 66.10 | 906.39 | | 1 2 | 2 | 04 | 7 | 20 | 3 70 | DB1 | |-----|---|-------|---|-------|------|-----| | 13 | | • U 4 | | · 4 U | ALC | LOU | | Wahpeton | Shallow Sand | Aguifer | | The same of the same of the same of the | t.)=115-120 | |--|--------------|-----------|----------|---|-------------| | The state of s | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 10/24/85 | 35.32 | 936.69 | 11/17/87 | 63.43 | 908.58 | | 11/01/85 | 35.23 | 936.78 | 12/01/87 | 61.95 | 910.06 | | 11/13/85 | 35.32 | 936.69 | | | i. | | 12/09/85 | 35.22 | 936.79 | 02/11/88 | 58.19 | 913.82 | | 12/10/85 | 35.35 | 936.66 | 04/22/88 | 58.34 | 913.67 | | 12/11/85 | 35.21 | 936.80 | 06/23/88 | 57.38 | 914.63 | | | | | 06/30/88 | 58.57 | 913.44 | | 03/03/86 | 34.77 | 937.24 | 07/27/88 | 62.67 | 909.34 | | 04/10/86 | 34.84 | 937.17 | 08/24/88 | 65.81 | 906.20 | | 05/15/86 | 34.32 | 937.69 | 09/30/88 | 65.17 | 906.84 | | 08/27/86 | 34.49 | 937.52 | 10/27/88 | 61.13 | 910.88 | | 09/30/86 | 34.40 | 937.61 | 11/30/88 | 58.88 | 913.13 | | 10/08/86 | 34.45 | 937.56 | | | | | 10/28/86 | 37.81 | 934.20 | 01/04/89 | 59.14 | 912.87 | | 11/04/86 | 43.87 | 928.14 | 02/16/89 | 56.37 | 915.64 | | 12/01/86 | 48.32 | 923.69 | 03/16/89 | 52.63 | 919.38 | | 12/02/86 | 48.34 | 923.67 | 04/19/89 | 49.65 | 922.36 | | | | | 05/17/89 | 48.67 | 923.34 | | 01/07/87 | 52.76 | 919.25 | 06/21/89 | 47.05 | 924.96 | | 01/29/87 | 54.92 | 917.09 | 07/19/89 | 46.77 | 925.24 | | 03/03/87 | 58.31 | 913.70 | 08/15/89 | 46.16 | 925.85 | | 03/24/87 | 60.11
 911.90 | 10/05/89 | 54.35 | 917.66 | | 05/13/87 | 64.16 | 907.85 | 10/25/89 | 49.53 | 922.48 | | 07/03/87 | 67.86 | 904.15 | 11/29/89 | 47.15 | 924.86 | | 08/04/87 | 69.64 | 902.37 | | | | | 09/01/87 | 71.34 | 900.67 | 01/03/90 | 46.30 | 925.71 | | 10/02/87 | 74.15 | 897.86 | 03/29/90 | 44.35 | 927.66 | | 10/12/87 | 70.67 | 901.34 | 04/23/90 | 43.88 | 928.13 | | 10/20/87 | 68.33 | 903.68 | 05/21/90 | 43.83 | 928.18 | | 11/02/87 | 65.42 | 906.59 | 06/14/90 | 43.93 | 928.08 | | 133-047- | 20ABDB2 | ** | | LS Elev (msl | ft)=972.14 | |----------|---------------|------------------|----------|--------------|----------------------------| | Wahpeton | Buried Valley | Aguifer | | SI (f | =248-253 | | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 10/04/05 | | 016.02 | 11/02/87 | 62.51 | 909.63 | | 10/24/85 | 55.22 | 916.92
916.83 | 11/02/87 | 62.26 | 909.88 | | 11/01/85 | 55.31 | | | | | | 11/13/85 | 54.57 | 917.57 | 12/01/87 | 59.63 | 912.51 | | 12/09/85 | 56.10 | 916.04 | 00/11/00 | 60.00 | 011 06 | | 12/10/85 | 54.51 | 917.63 | 02/11/88 | 60.28 | 911.86 | | 12/11/85 | 54.74 | 917.40 | 04/22/88 | 59.68 | 912.46 | | | | 150 | 06/23/88 | 70.93 | 901.21 | | 04/10/86 | 56.61 | 915.53 | 06/30/88 | 71.57 | 900.57 | | 05/15/86 | 55.14 | 917.00 | 07/27/88 | 69.23 | 902.91 | | 08/27/86 | 68.46 | 903.68 | 08/24/88 | 64.05 | 908.09 | | 09/30/86 | 58.28 | 913.86 | 09/30/88 | 63.41 | 908.73 | | 10/08/86 | 56.56 | 915.58 | 10/27/88 | 62.08 | 910.06 | | 10/09/86 | 56.46 | 915.68 | 11/30/88 | 60.20 | 911.94 | | 10/10/86 | 55.96 | 916.18 | | | | | 10/11/86 | 55.73 | 916.41 | 01/04/89 | 61.15 | 910.99 | | 10/15/86 | 56.02 | 916.12 | 02/16/89 | 60.61 | 911.53 | | 10/28/86 | 56.64 | 915.50 | 03/16/89 | 60.74 | 911.40 | | 11/04/86 | 78.12 | 894.02 | 04/19/89 | 61.67 | 910.47 | | 12/01/86 | 81.42 | 890.72 | 05/17/89 | 71.20 | 900.94 | | 12/02/86 | 79.92 | 892.22 | 06/21/89 | 66.79 | 905.35 | | | × | | 07/19/89 | 71.01 | 901.13 | | 01/07/87 | 82.61 | 889.53 | 08/15/89 | 71.32 | 900.82 | | 01/29/87 | 78.11 | 894.03 | 10/05/89 | 62.99 | 909.15 | | 03/03/87 | 84.63 | 887.51 | 10/25/89 | 61.95 | 910.19 | | 03/24/87 | 85.69 | 886.45 | 11/29/89 | 61.04 | 911.10 | | 05/14/87 | 66.15 | 905.99 | | | | | 07/03/87 | 67.71 | 904.43 | 01/03/90 | 60.24 | 911.90 | | 08/04/87 | 64.14 | 908.00 | 03/30/90 | 58.97 | 913.17 | | 09/01/87 | 64.87 | 907.27 | 04/23/90 | 63.06 | 909.08 | | 10/02/87 | 62.37 | 909.77 | 05/21/90 | 61.90 | 910.24 | | 10/12/87 | 62.50 | 909.64 | 06/14/90 | 65.58 | 906.56 | | 10/20/87 | 61.54 | 910.60 | | | TOTAL TOTAL BUILDING TOTAL | | 122 047 | 2020003 | | | IC Flay (mel | f+1-972 15 | | 133-047- | 20ABDB3 | | | PROBLEM ASSESSED METEROLOGICAL | (tt) = 9/2.15 | | |----------|--------------|-----------|----------|--------------------------------|---------------|--| | Wahpeton | Shallow Sand | Aquifer | | SI | (ft.)=45-50 | | | | Depth to | WL Elev | | Depth to | WL Elev | | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | 10/23/85 | 35.17 | 936.98 | 11/04/86 | 42.66 | 929.49 | | | 10/24/85 | 35.38 | 936.77 | 12/01/86 | 47.14 | 925.01 | | | 11/01/85 | 35.25 | 936.90 | 12/02/86 | 47.22 | 924.93 | | | 11/13/85 | 35.30 | 936.85 | | | | | | 12/09/85 | 35.30 | 936.85 | 07/19/89 | 46.91 | 925.24 | | | 12/10/85 | 35.36 | 936.79 | 08/15/89 | 46.28 | 925.87 | | | 12/11/85 | 35.23 | 936.92 | | | | | | | | | 01/03/90 | 47.06 | 925.09 | | | 04/10/86 | 34.84 | 937.31 | 03/29/90 | 44.52 | 927.63 | | | 05/15/86 | 34.34 | 937.81 | 04/23/90 | 44.08 | 928.07 | | | 09/30/86 | 34.38 | 937.77 | 05/21/90 | 44.15 | 928.00 | | | 10/08/86 | 34.45 | 937.70 | 06/14/90 | 44.18 | 927.97 | | | 10/29/96 | 37 90 | 934 35 | | | | | | Wahpeton | Buried Valley | Aguifer | | SI (ft.)=273-278 | | | |----------|---------------|-----------|----------|------------------|-----------|--| | | Depth to | WL Elev | | Depth to | WL Elev | | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | 04/10/86 | 59.58 | 915.63 | 06/23/88 | 73.44 | 901.77 | | | 05/15/86 | 57.75 | 917.46 | 06/30/88 | 74.02 | 901.19 | | | 08/27/86 | 71.18 | 904.03 | 07/27/88 | 71.76 | 903.45 | | | 09/30/86 | 60.73 | 914.48 | 08/24/88 | 66.82 | 908.39 | | | 10/08/86 | 59.14 | 916.07 | 09/30/88 | 66.20 | 909.01 | | | 10/09/86 | 59.03 | 916.18 | 10/27/88 | 65.36 | 909.85 | | | 10/10/86 | 58.56 | 916.65 | 11/30/88 | 63.36 | 911.85 | | | 10/11/86 | 58.32 | 916.89 | | | | | | 10/15/86 | 58.56 | 916.65 | 01/04/89 | 64.25 | 910.96 | | | 10/28/86 | 59.34 | 915.87 | 02/16/89 | 63.73 | 911.48 | | | 11/04/86 | 78.56 | 896.65 | 03/16/89 | 63.93 | 911.28 | | | 12/01/86 | 82.58 | 892.63 | 04/19/89 | 64.40 | 910.81 | | | 12/02/86 | 80.98 | 894.23 | 05/17/89 | 73.87 | 901.34 | | | | | | 06/21/89 | 69.62 | 905.59 | | | 01/07/87 | 83.45 | 891.76 | 07/19/89 | 73.72 | 901.49 | | | 01/29/87 | 79.54 | 895.67 | 08/15/89 | 74.40 | 900.81 | | | 03/03/87 | 85.59 | 889.62 | 10/05/89 | 66.22 | 908.99 | | | 03/24/87 | 86.65 | 888.56 | 10/25/89 | 64.72 | 910.49 | | | 05/14/87 | 69.14 | 906.07 | 11/29/89 | 64.37 | 910.84 | | | 07/03/87 | 70.76 | 904.45 | | | | | | 08/04/87 | 67.26 | 907.95 | 01/03/90 | 62.86 | 912.35 | | | 09/01/87 | 67.35 | 907.86 | 03/30/90 | 62.05 | 913.16 | | | 11/03/87 | 63.70 | 911.51 | 04/23/90 | 65.79 | 909.42 | | | 12/01/87 | 62.92 | 912.29 | 05/02/90 | 64.99 | 910.22 | | | | | | 05/21/90 | 64.99 | 910.22 | | | 04/22/88 | 62.81 | 912.40 | 06/14/90 | 68.27 | 906.94 | | | 133-047- | 20ABDB5
Sand Plain Acu | LS Elev (msl | ft)=975.02 | | | |----------|---------------------------|--------------|------------|------------|-----------| | | Depth to | WL Elev | 2 | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 04/10/86 | 59.18 | 915.84 | 04/22/88 | 62.66 | 912.36 | | 05/15/86 | 57.38 | 917.64 | 06/23/88 | 73.04 | 901.98 | | 08/27/86 | 70.57 | 904.45 | 06/30/88 | 73.59 | 901.43 | | 09/30/86 | 60.30 | 914.72 | 07/27/88 | 71.49 | 903.53 | | 10/08/86 | 58.75 | 916.27 | 08/24/88 | 66.81 | 908.21 | | 10/09/86 | 58.67 | 916.35 | 09/30/88 | 66.16 | 908.86 | | 10/10/86 | 58.21 | 916.81 | 10/27/88 | 65.25 | 909.77 | | 10/11/86 | 58.00 | 917.02 | 11/30/88 | 63.26 | 911.76 | | 10/15/86 | 58.25 | 916.77 | | | | | 10/28/86 | 58.99 | 916.03 | 01/04/89 | 64.17 | 910.85 | | 11/04/86 | 77.85 | 897.17 | 02/16/89 | 63.58 | 911.44 | | 12/01/86 | 81.95 | 893.07 | 03/16/89 | 63.69 | 911.33 | | 12/02/86 | 80.44 | 894.58 | 04/19/89 | 64.07 | 910.95 | | | | | 05/17/89 | 73.31 | 901.71 | | 01/07/87 | 82.91 | 892.11 | 06/21/89 | 69.14 | 905.88 | | 01/29/87 | 79.11 | 895.91 | 07/19/89 | 73.16 | 901.86 | | 03/03/87 | 85.10 | 889.92 | 08/15/89 | 73.79 | 901.23 | | 03/24/87 | 86.08 | 888.94 | 10/05/89 | 65.94 | 909.08 | | 05/14/87 | 69.01 | 906.01 | 10/25/89 | 64.42 | 910.60 | | 07/03/87 | 70.64 | 904.38 | 11/29/89 | 64.00 | 911.02 | | 08/04/87 | 67.25 | 907.77 | | | | | 09/01/87 | 67.41 | 907.61 | 01/03/90 | 62.54 | 912.48 | | 10/12/87 | 65.83 | 909.19 | 03/30/90 | 61.71 | 913.31 | | 11/03/87 | 63.71 | 911.31 | 04/23/90 | 65.33 | 909.69 | | 11/17/87 | 64.89 | 910.13 | 05/21/90 | 64.54 | 910.48 | | 12/01/87 | 62.69 | 912.33 | 06/14/90 | 67.81 | 907.21 | | 133-047- | | Nami fa | | | LS Elev (msl | | |----------------------|-----------------------|-------------------|-----|------------|------------------------|-------------------| | wandeton | Shallow Sand Depth to | WL Elev | | | | (ft.)=50-55 | | Date | Water (ft) | (msl, ft) | | Date | Depth to
Water (ft) | WL Elev (msl, ft) | | 04/10/86 | 37.77 | 937.29 | | 01/07/87 | 53.54 | 921.52 | | 05/15/86 | 37.31 | 937.75 | | | | | | 08/27/86 | 37.36 | 937.70 | | 05/17/89 | 52.14 | 922.92 | | 09/30/86 | 37.29 | 937.77 | | 06/21/89 | 50.24 | 924.82 | | 10/08/86 | 37.33 | 937.73 | | 07/19/89 | 49.88 | 925.18 | | 10/09/86 | 38.64 | 936.42 | | 08/15/89 | 49.26 | 925.80 | | 10/10/86 | 39.08 | 935.98 | | 10/25/89 | 52.76 | 922.30 | | 10/11/86 | 39.95 | 935.11 | | 11/29/89 | 50.30 | 924.76 | | 10/15/86 | 41.80 | 933.26 | | 04 (00 (00 | 40.40 | | | 10/20/86
10/28/86 | 43.32 | 931.74 | | 01/03/90 | 49.43 | 925.63 | | 11/04/86 | 40.74
44.47 | 934.32 | | 03/29/90 | 47.50 | 927.56 | | | | 930.59 | | 04/23/90 | 47.04 | 928.02 | | 12/01/86
12/02/86 | 48.90
48.97 | 926.16
926.09 | | 05/21/90 | 47.06 | 928.00 | | 12/02/80 | 40.37 | 920.09 | | 06/14/90 | 47.05 | 928.01 | | 133-047- | | | | | LS Elev (msl | ,ft)=971.84 | | <i>Mahpeton</i> | Shallow Sand A | Aguifer | | | SI (| ft.)=95-115 | | Date | Depth to Water (ft) | WL Elev (msl, ft) | | Date | Depth to
Water (ft) | WL Elev (msl, ft) | |
09/30/86 | 34.25 | 937.59 | | 06/30/88 | 62.33 | 909.51 | | 10/08/86 | 34.23 | 937.61 | | 07/27/88 | 66.47 | 905.37 | | 0/28/86 | 37.58 | 934.26 | | 08/22/88 | 69.54 | 902.30 | | 1/04/86 | 49.96 | 921.88 | 18 | 08/24/88 | 69.54 | 902.30 | | 2/01/86 | 54.33 | 917.51 | | 09/30/88 | 66.81 | 905.03 | | 2/02/86 | 54.41 | 917.43 | : * | 10/27/88 | 62.44 | 909.40 | | | | | | 11/30/88 | 59.41 | 912.43 | | 01/07/87 | 58.76 | 913.08 | | • | | | | 01/29/87 | 61.14 | 910.70 | | 01/04/89 | 60.82 | 911.02 | | 03/03/87 | 64.27 | 907.57 | | 02/16/89 | 56.37 | 915.47 | | 03/24/87 | 65.87 | 905.97 | | 03/16/89 | 52.45 | 919.39 | | 05/13/87 | 70.30 | 901.54 | | 04/19/89 | 49.47 | 922.37 | | 7/02/87 | 73.69 | 898.15 | | 05/17/89 | 48.51 | 923.33 | | 07/03/87 | 73.79 | 898.05 | | 06/21/89 | 46.96 | 924.88 | | 09/01/87 | 76.00 | 895.84 | | 07/19/89 | 46.66 | 925.18 | | 10/02/87 | 80.01 | 891.83 | | 08/15/89 | 46.01 | 925.83 | | 10/12/87 | 63.74 | 908.10 | | 10/05/89 | 59.39 | 912.45 | | 10/20/87 | 70.18 | 901.66 | | 10/25/89 | 49.44 | 922.40 | | 11/02/87 | 67.03 | 904.81 | | 11/29/89 | 47.07 | 924.77 | | 11/17/87 | 65.09 | 906.75 | | | | | | 12/01/87 | 63.56 | 908.28 | | 03/29/90 | 44.24 | 927.60 | | | | | | 04/23/90 | 43.73 | 928.11 | | 02/11/88 | 58.08 | 913.76 | | 05/21/90 | 43.80 | 928.04 | | 04/22/88
06/23/88 | 59.95
58.78 | 911.89
913.06 | | 06/14/90 | 43.81 | 928.03 |
| L33-047- | 20ABDB8 | | | * | LS Elev (msl | ft)=982.74 | | Vahpeton : | Shallow Sand A | Aquifer | | | | ft.)=92-102 | | | Depth to | WL Elev | | an Anton | Depth to | WL Elev | |)ate
 | Water (ft) | (msl, ft) | | Date | Water (ft) | (msl, ft) | | 05/17/89 | 59.34 | 923.40 | | | | | | Wahpeton | Shallow Sand | Aquifer | | LS Elev (msl, | ft.)=92-102 | |----------|--------------|-----------|----------|---------------|-------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 05/17/89 | 59.34 | 923.40 | | | | | 06/21/89 | 57.93 | 924.81 | 01/03/90 | 57.02 | 925.72 | | 07/19/89 | 57.51 | 925.23 | 03/29/90 | 55.11 | 927.63 | | 08/15/89 | 56.89 | 925.85 | 04/23/90 | 54.63 | 928.11 | | 10/05/89 | 62.94 | 919.80 | 05/21/90 | 54.68 | 928.06 | | 10/25/89 | 60.31 | 922.43 | 06/14/90 | 54.68 | 928.06 | | 11/29/89 | 57.90 | 924.84 | | | | | Name | | -20ABDBA1 | B | | LS Elev (msl | | |--|--|----------------|---------|--|--------------------------------|---------------| | Date | Manbecon | | | | Dec 1 | | | 09/30/86 | Date | | | Date | EXC VOICED DESCRIPTION EDITORS | | | 10/08/86 34.53 937.71 10/09/86 36.53 935.71 10/19/86 37.02 935.22 05/17/89 48.83 923.41 10/11/86 37.93 934.31 10/11/86 37.93 934.31 10/15/86 39.97 10/25/86 39.97 10/28/86 37.93 934.31 10/15/86 39.97 11/04/86 42.61 12/01/86 47.09 11/04/86 47.15 12/01/86 47.09 11/04/86 47.15 12/01/86 47.15 13/01/87 11/01/87 15.65 10/05/89 11/29/89 11/29/89 11/29/89 11/29/89 11/29/89 11/29/89 11/29/89 11/29/89 11/29/89 11/29/89 11/29/87 15.79 18.45 10/25/89 14.14 1928.10 10/21/488 18.55 1913.69 10/61/49/0 14.16 12/88.10 10/21/488 18.10 10/21/488 18.10 1937.76 10/23/88 17.25 11/21/41-119 10/28/86 13.44 1937.76 10/23/88 17.25 11/29/89 10/23/88 13/23/88 12/23/88 12/23/88 12/23/88 12/23/88 12/23/88 12/23/88 12/23/88 12/23/88 12/23/ | | | | | 0 000 | 915.04 | | 10/10/86 37.02 935.71 04/19/89 49.80 922.44 | | | | 06/30/88 | 58.51 | 913.73 | | 10/10/86 37.02 935.22 05/17/89 48.83 923.41 10/11/86 37.93 934.31 06/21/89 47.29 924.95 10/15/86 39.97 932.27 07/19/89 46.97 925.27 10/28/86 37.93 934.31 08/15/89 46.97 925.27 10/28/86 47.61 929.63 10/05/89 53.28 918.96 12/01/86 47.09 925.15 10/25/89 49.74 922.50 12/02/86 47.15 925.09 11/29/89 47.36 924.88 01/07/87 51.65 920.59 01/03/90 46.52 925.72 01/29/87 53.79 918.45 03/29/90 44.55 927.69 03/03/87 57.23 915.01 04/23/90 44.14 928.10 02/11/88 58.55 913.69 06/14/90 44.16 928.08 04/12/88 58.07 914.17 133-047-20ABDBA2 LS Elev (ms1, ft) Depth to WL Elev | | | | | | | | 10/11/86 37.93 934.31 06/21/89 47.29 924.95 10/15/86 39.97 932.27 07/19/89 46.97 925.27 10/28/86 37.93 934.31 08/15/89 46.97 925.27 11/04/86 42.61 929.63 10/05/89 53.28 918.96 11/04/86 47.09 925.15 10/25/89 49.74 922.50 11/20/286 47.15 925.09 11/29/89 47.36 924.88 01/07/87 51.65 920.59 01/03/90 46.52 925.72 01/29/87 53.79 918.45 03/29/90 44.55 927.69 03/03/87 57.23 915.01 04/23/90 44.08 928.16 02/11/88 58.55 913.69 06/14/90 44.16 928.08 04/22/88 58.07 914.17 133-047-20ABDBA2 LS Elev (msl.,ft) =972.2 Mahpeton Shallow Sand Aguifer SI (ft.)=114-119 Depth to WL Elev Date Water (ft) (msl., ft) 08/28/86 34.44 937.76 06/23/88 57.25 914.95 09/30/86 34.57 937.63 06/30/88 57.93 914.27 10/08/86 34.61 937.59 07/27/88 62.08 910.12 10/28/86 38.01 934.19 08/24/88 65.15 907.05 11/04/86 42.26 929.34 09/30/88 64.90 907.30 12/01/86 47.33 924.87 10/27/88 60.93 911.27 11/04/86 47.33 924.81 11/30/88 58.87 913.33 01/07/87 51.87 920.33 01/26/89 58.96 913.24 01/29/87 53.96 918.24 02/16/89 56.67 915.53 03/03/87 57.42 914.78 03/16/89 52.82 919.38 03/24/87 59.21 912.99 04/19/89 49.85 922.35 03/12/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 66.81
900.97 01/10/87 65.23 908.97 01/02/87 65.23 908.97 01/02/87 65.23 90 | | | | 04/19/89 | 49.80 | 922.44 | | 10/15/86 | 10/10/86 | 37.02 | 935.22 | 05/17/89 | 48.83 | 923.41 | | 10/28/86 37.93 934.31 08/15/89 46.34 925.90 11/04/86 47.09 925.15 10/25/89 49.74 922.50 12/02/86 47.15 925.09 11/29/89 47.36 924.88 01/07/87 51.65 920.59 01/03/90 46.52 925.72 01/29/87 53.79 918.45 03/29/90 44.55 927.69 03/03/87 57.23 915.01 04/23/90 44.08 928.16 02/11/88 58.55 913.69 06/14/90 44.16 928.08 04/22/88 58.07 914.17 133-047-20ABDBA2 LS Elev (msl.,ft) = 72.2 Wahpeton Shallow Sand Acuifer SI (ft.)=114-119 Depth to WL Elev Water (ft) (msl., ft) Date Water (ft) (msl., ft) 09/30/86 34.44 937.76 06/23/88 57.25 914.95 09/30/86 34.61 937.59 07/27/88 62.08 910.12 10/28/86 38.01 934.19 08/24/88 65.15 907.05 11/04/86 42.86 929.34 09/30/88 67.93 914.27 12/01/86 47.33 924.87 10/27/88 60.93 911.27 12/01/86 47.39 924.81 11/30/88 58.87 913.33 01/07/87 51.87 920.33 01/05/89 58.96 913.24 01/29/87 53.96 918.24 02/16/89 56.67 915.53 03/03/87 57.42 914.78 03/16/89 52.82 919.38 03/24/87 59.21 912.99 04/19/89 49.85 922.35 03/03/87 66.89 905.31 06/21/89 48.93 923.27 07/03/87 66.89 905.31 06/21/89 48.93 923.27 07/03/87 66.89 905.31 06/21/89 48.93 923.27 07/03/87 66.89 905.31 06/21/89 49.85 922.35 05/13/87 66.89 905.31 06/21/89 49.85 922.35 05/13/87 66.89 905.31 06/21/89 49.85 922.35 05/13/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 66.73 903.47 07/19/89 49.85 922.35 05/13/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 66.73 903.47 07/19/89 49.85 922.35 05/13/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 66.83 905.31 06/21/89 47.41 924.79 08/04/87 66.83 905.31 06/21/89 47.41 924.79 08/04/87 66.83 905.31 06/21/89 47.41 924.79 08/04/87 66.83 905.31 06/21/89 47.41 924.79 08/04/87 66.83 905.31 06/21/89 47.41 924.79 08/04/87 66.83 905.31 06/21/89 47.41 924.79 08/04/87 66.83 905.31 06/21/89 47.41 924.79 08/04/87 66.83 905.31 06/21/89 47.41 924.79 08/04/87 66.83 905.31 06/21/89 47.41 924.79 08/04/87 66.83 906.97 01/01/27/87 70.42 901.78 10/05/89 53.45 918.75 01/01/27/87 66.23 906.97 01/01/27/87 66.23 906.97 01/01/27/87 66.23 906.97 01/01/27/87 66.23 906.97 01/01/27/87 66.23 906.97 01/01/27/87 66.23 906.97 01/01/27/88 58.3 | 10/11/86 | 37.93 | 934.31 | 06/21/89 | 47.29 | 924.95 | | 11/04/86 | 10/15/86 | 39.97 | 932.27 | 07/19/89 | 46.97 | 925.27 | | 12/01/86 47.09 925.15 10/25/89 49.74 922.50 12/02/86 47.15 925.09 11/29/89 47.36 924.88 01/07/87 51.65 920.59 01/03/90 46.52 925.72 01/29/87 53.79 918.45 03/29/90 44.08 928.16 05/21/90 44.14 928.10 02/11/88 58.55 913.69 06/14/90 44.16 928.08 04/22/88 58.07 914.17 | 10/28/86 | 37.93 | 934.31 | 08/15/89 | 46.34 | 925.90 | | 12/01/86 | 11/04/86 | 42.61 | 929.63 | 10/05/89 | 53.28 | 918.96 | | 01/07/87 51.65 920.59 01/03/90 46.52 925.72 01/29/87 53.79 918.45 03/29/90 44.55 927.69 03/03/87 57.23 915.01 04/23/90 44.08 928.16 05/21/90 44.14 928.10 05/21/90 44.16 928.08 04/22/88 58.55 913.69 06/14/90 44.16 928.08 04/22/88 58.07 914.17 I33-047-20ABDBA2 | 12/01/86 | 47.09 | 925.15 | 10/25/89 | 49.74 | | | 01/29/87 53.79 918.45 03/29/90 44.55 927.69 03/03/87 57.23 915.01 04/23/90 44.08 928.16 02/11/88 58.55 913.69 06/14/90 44.16 928.08 04/22/88 58.07 914.17 133-047-20ABDBA2 Water (ft) WL Elev Depth to WL Elev Water (ft) (msl, ft) 08/28/86 34.44 937.76 06/23/88 57.25 914.95 09/30/86 34.57 937.63 06/30/88 57.93 914.27 10/28/86 38.01 934.19 08/24/88 65.15 907.05 11/04/86 42.86 929.34 09/30/88 64.90 907.30 11/04/86 47.33 924.87 10/27/88 60.93 911.27 12/02/86 47.39 924.81 11/30/88 58.87 913.33 01/07/87 51.87 920.33 01/05/89 58.87 913.33 01/07/87 53.96 918.24 02/16/89 56.67 915.53 03/03/87 57.42 914.78 03/16/89 52.82 919.38 03/24/87 55.21 912.99 04/19/89 49.85 922.35 05/13/87 63.24 908.96 05/17/89 49.85 922.35 05/13/87 63.24 908.96 05/17/89 49.85 922.35 05/13/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 49.85 922.35 05/13/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 49.85 922.35 05/13/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.08 925.12 09/01/87 70.57 901.63 08/15/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.08 925.12 09/01/87 70.57 901.63 08/15/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.08 925.12 01/02/87 65.23 906.97 11/17/87 63.23 908.97 01/03/90 46.74 925.46 11/17/87 63.23 908.97 01/03/90 46.74 925.46 11/17/87 63.23 908.97 01/03/90 44.15 928.05 02/11/88 58.36 913.84 05/21/90 44.18 928.05 | 12/02/86 | 47.15 | 925.09 | 11/29/89 | 47.36 | 924.88 | | 03/03/87 57.23 915.01 04/23/90 44.08 928.16 05/21/90 44.14 928.10 05/21/188 58.55 913.69 06/14/90 44.16 928.08 04/22/88 58.07 914.17 133-047-20ABDBA2 | 01/07/87 | 51.65 | 920.59 | 01/03/90 | 46.52 | 925.72 | | 02/11/88 58.55 913.69 06/14/90 44.14 928.10 04/22/88 58.07 914.17 133-047-20ABDBA2 LS Elev (msl,ft)=972.2 Wahneton Shallow Sand Acuifer SI (ft.)=114-119 Depth to Water (ft) (msl, ft) Depth to Water (ft) (msl, ft) 08/28/86 34.44 937.76 06/23/88 57.25 914.95 06/30/88 57.93 914.27 10/08/86 34.57 937.63 06/30/88 57.93 914.27 10/08/86 38.01 934.19 08/24/88 65.15 907.05 11/04/86 42.86 929.34 09/30/88 64.90 907.30 12/01/86 47.33 924.87 10/27/88 60.93 911.27 12/02/86 47.39 924.81 11/30/88 58.87 913.33 01/07/87 51.87 920.33 01/05/89 58.96 913.24 01/29/87 53.96 918.24 02/16/89 56.67 915.53 03/03/87 57.42 914.78 03/16/89 52.82 919.38 03/24/87 59.21 912.99 04/19/89 49.85 922.35 05/13/87 63.24 908.96 05/17/89 48.93 923.27 07/03/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.98 925.12 09/90/187 70.57 901.63 08/15/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.98 925.12 09/90/187 70.57 901.63 08/15/89 49.81 922.35 09/90/187 70.57 901.63 08/15/89 49.81 922.39 10/20/87 68.11 904.09 11/29/89 49.81 922.39 10/20/87 68.11 904.09 11/29/89 49.81 922.39 10/20/87 65.23 906.97 11/10/287 65.23 906.97 11/10/287 65.23 908.97 01/03/90 46.74 925.46 12/01/87 61.74 910.46 03/29/90 44.62 927.58 02/11/88 58.36 913.84 05/21/90 44.18 928.05 02/11/88 58.36 913.84 05/21/90 44.18 928.05 | 01/29/87 | 53.79 | 918.45 | 03/29/90 | 44.55 | 927.69 | | 02/11/88 58.55 913.69 06/14/90 44.16 928.08 04/22/88 58.07 914.17 133-047-20ABDBA2 | 03/03/87 | 57.23 | 915.01 | 04/23/90 | 44.08 | 928.16 | | 04/22/88 58.07 914.17 133-047-20ABDBA2 LS Elev (msl,ft)=972.2 Wahneton Shallow Sand Acuifer SI (ft.)=114-119 Depth to WL Elev Water (ft) Depth to WL Elev Water (ft) Depth to (msl, ft) 08/28/86 34.44 937.76 06/23/88 57.25 914.95 09/30/86 34.57 937.63 06/30/88 57.93 914.27 10/28/86 34.61 937.59 07/27/88 62.08 910.12 10/28/86 38.01 934.19 08/24/88 65.15 907.05 11/04/86 42.86 929.34 09/30/88 64.90 907.30 12/01/86 47.33 924.87 10/27/88 60.93 911.27 12/02/86 47.39 924.81 11/30/88 58.87 913.33 01/07/87 51.87 920.33 01/05/89 58.96 913.24 01/29/87 53.96 918.24 02/16/89 56.67 915.53 03/20/387 57.42 914.78 03/16/89 52.82 919.38 | | | | 05/21/90 | 44.14 | 928.10 | | LS Elev (msl,ft) =972.2 Wahneton Shallow Sand Adulfer SI (ft.]=114-119 Depth to WL Elev Water (ft) (msl, ft) Depth to Water (ft) (msl, ft) Water (ft) Water (ft) (msl, ft) 08/28/86 34.44 937.76 06/23/88 57.25 914.95 09/30/86 34.57 937.63 06/30/88 57.93 914.27 10/08/86 34.61 937.59 07/27/88 62.08 910.12 10/28/86 38.01 934.19 08/24/88 65.15 907.05 11/04/86 42.86 929.34 09/30/88 64.90 907.30 12/01/86 47.33 924.87 10/27/88 60.93 911.27 12/02/86 47.39 924.81 11/30/88 58.87 913.33 01/07/87 51.87 920.33 01/05/89 58.96 913.24 01/05/89 56.67 915.53 03/30/387 57.42 914.78 03/16/89 52.82 919.38 03/24/87 59.21 912.99 04/19/89 49.85 922.35 05/13/87 63.24 908.96 05/17/89 48.93 923.27 07/03/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.08 925.12 09/01/87 70.57 901.63 08/15/89 46.44 925.76 09/01/87 70.57 901.63 08/15/89 47.08 925.12 09/01/87 70.57 901.63 08/15/89 47.98 192.39 10/02/87 68.11 904.09 11/29/89 47.50 924.70 11/02/87 65.23 906.97 11/17/87 63.23 908.97 01/03/90 46.74 925.46 11/17/87 63.23 908.97 01/03/90 44.62 927.58 02/11/88 58.36 913.84 05/21/90 44.18 928.02 | 02/11/88 | 58.55 | 913.69 | 06/14/90 | 44.16 | 928.08 | | Wahnbeton Shallow Sand Acquifer ST (ft.)=114-119 Date Depth to Water (ft) (msl, ft) Date Depth to Water (ft) (msl, ft) 08/28/86 34.44 937.76 06/23/88 57.25 914.95 09/30/86 34.57 937.63 06/30/88 57.93 914.27 10/08/86 34.61 937.59 07/27/88 62.08 910.12 11/04/86 42.86 929.34 09/30/88 64.90 907.30 11/04/86 42.86 929.34 09/30/88 64.90 907.30 12/01/86 47.33 924.87 10/27/88 60.93 911.27 12/02/86 47.39 924.81 11/30/88 58.87 913.33 01/07/87 51.87 920.33 01/05/89 58.96 913.24 01/29/87 53.96 918.24 02/16/89 56.67 915.53 03/03/87 57.42 914.78 03/16/89 52.82 919.38 03/24/87 59.21 912.99 | 04/22/88 | 58.07 | 914.17 | | | | | Depth to Date WL Elev (msl, ft) Date Depth to Water (ft) WL Elev (msl, ft) 08/28/86 34.44 937.76 06/23/88 57.25 914.95 09/30/86 34.57 937.63 06/30/88 57.93 914.27 10/08/86 34.61 937.59 07/27/88 62.08 910.12 10/28/86 38.01 934.19 08/24/88 65.15 907.05 11/04/86 42.86 929.34 09/30/88 64.90 907.30 12/01/86 47.33 924.87 10/27/88 60.93 911.27 12/02/86 47.39 924.81 11/30/88 58.87 913.33 01/07/87 51.87 920.33 01/05/89 58.96 913.24 01/29/87 53.96 918.24 02/16/89 56.67 915.53 03/03/87 57.42 914.78 03/16/89 52.82 919.38 03/24/87 59.21 912.99 04/19/89 49.85 922.35 05/13/87 63. | 133-047- | 20ABDBA2 | | | LS Elev (ms | l,ft)=972.2 | | Date Water (ft) (msl, ft) Date Water (ft) (msl, ft) 08/28/86 34.44 937.76 06/23/88 57.25 914.95 09/30/86 34.57 937.63 06/30/88 57.93 914.27 10/08/86 34.61 937.59 07/27/88 62.08 910.12 10/28/86 38.01 934.19 08/24/88 65.15 907.05 11/04/86 42.86 929.34 09/30/88 64.90 907.30 12/01/86 47.33 924.87 10/27/88 60.93 911.27 12/02/86 47.39 924.81 11/30/88 58.87 913.33 01/07/87 51.87 920.33 01/05/89 58.96 913.24 01/29/87 53.96 918.24 02/16/89 56.67 915.53 03/24/87 59.21 914.78 03/16/89 52.82 919.38 03/24/87 59.21 912.99 04/19/89 49.85 922.35 05/13/87 63.24 908.96 | Wahpeton : | Shallow Sand A | Aguifer | | SI (ft |) = 114 - 119 | | Date Water (ft) (msl, ft) Date Water (ft)
(msl, ft) 08/28/86 34.44 937.76 06/23/88 57.25 914.95 09/30/86 34.57 937.63 06/30/88 57.93 914.27 10/08/86 34.61 937.59 07/27/88 62.08 910.12 10/28/86 38.01 934.19 08/24/88 65.15 907.05 11/04/86 42.86 929.34 09/30/88 64.90 907.30 12/01/86 47.33 924.87 10/27/88 60.93 911.27 12/02/86 47.39 924.81 11/30/88 58.87 913.33 01/07/87 51.87 920.33 01/05/89 58.96 913.24 01/29/87 53.96 918.24 02/16/89 56.67 915.53 03/24/87 59.21 912.79 04/19/89 49.85 922.35 05/13/87 63.24 908.96 05/17/89 48.93 923.27 07/03/87 66.89 905.31 | | Depth to | WL Elev | | Depth to | WL Elev | | 09/30/86 34.57 937.63 06/30/88 57.93 914.27 10/08/86 34.61 937.59 07/27/88 62.08 910.12 10/28/86 38.01 934.19 08/24/88 65.15 907.05 11/04/86 42.86 929.34 09/30/88 64.90 907.30 12/01/86 47.33 924.87 10/27/88 60.93 911.27 12/02/86 47.39 924.81 11/30/88 58.87 913.33 01/07/87 51.87 920.33 01/05/89 58.96 913.24 01/29/87 53.96 918.24 02/16/89 56.67 915.53 03/03/87 57.42 914.78 03/16/89 52.82 919.38 03/24/87 59.21 912.99 04/19/89 49.85 922.35 05/13/87 63.24 908.96 05/17/89 48.93 923.27 07/03/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 68.73 | Date | Water (ft) | | Date | | | | 10/08/86 34.61 937.59 07/27/88 62.08 910.12 10/28/86 38.01 934.19 08/24/88 65.15 907.05 11/04/86 42.86 929.34 09/30/88 64.90 907.30 12/01/86 47.33 924.87 10/27/88 60.93 911.27 12/02/86 47.39 924.81 11/30/88 58.87 913.33 01/07/87 51.87 920.33 01/05/89 58.96 913.24 01/29/87 53.96 918.24 02/16/89 56.67 915.53 03/03/87 57.42 914.78 03/16/89 52.82 919.38 03/24/87 59.21 912.99 04/19/89 49.85 922.35 05/13/87 63.24 908.96 05/17/89 48.93 923.27 07/03/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.08 925.12 09/01/87 70.57 901.63 08/15/89 46.44 925.76 10/12/87 70 | 08/28/86 | 34.44 | 937.76 | 06/23/88 | 57.25 | 914.95 | | 10/28/86 38.01 934.19 08/24/88 65.15 907.05 11/04/86 42.86 929.34 09/30/88 64.90 907.30 12/01/86 47.33 924.87 10/27/88 60.93 911.27 12/02/86 47.39 924.81 11/30/88 58.87 913.33 01/07/87 51.87 920.33 01/05/89 58.96 913.24 01/29/87 53.96 918.24 02/16/89 56.67 915.53 03/03/87 57.42 914.78 03/16/89 52.82 919.38 03/24/87 59.21 912.99 04/19/89 49.85 922.35 05/13/87 63.24 908.96 05/17/89 48.93 923.27 07/03/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.08 925.12 09/01/87 70.57 901.63 08/15/89 46.44 925.76 10/02/87 73.26 898.94 10/05/89 53.45 918.75 10/12/87 70 | 09/30/86 | 34.57 | 937.63 | 06/30/88 | 57.93 | 914.27 | | 11/04/86 42.86 929.34 09/30/88 64.90 907.30 12/01/86 47.33 924.87 10/27/88 60.93 911.27 12/02/86 47.39 924.81 11/30/88 58.87 913.33 01/07/87 51.87 920.33 01/05/89 58.96 913.24 01/29/87 53.96 918.24 02/16/89 56.67 915.53 03/03/87 57.42 914.78 03/16/89 52.82 919.38 03/24/87 59.21 912.99 04/19/89 49.85 922.35 05/13/87 63.24 908.96 05/17/89 48.93 923.27 07/03/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.08 925.12 09/01/87 70.57 901.63 08/15/89 46.44 925.76 10/02/87 73.26 898.94 10/05/89 53.45 918.75 10/12/87 70.42 901.78 10/25/89 49.81 922.39 11/02/87 65 | 10/08/86 | 34.61 | 937.59 | 07/27/88 | 62.08 | 910.12 | | 11/04/86 42.86 929.34 09/30/88 64.90 907.30 12/01/86 47.33 924.87 10/27/88 60.93 911.27 12/02/86 47.39 924.81 11/30/88 58.87 913.33 01/07/87 51.87 920.33 01/05/89 58.96 913.24 01/29/87 53.96 918.24 02/16/89 56.67 915.53 03/03/87 57.42 914.78 03/16/89 52.82 919.38 03/24/87 59.21 912.99 04/19/89 49.85 922.35 05/13/87 63.24 908.96 05/17/89 48.93 923.27 07/03/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.08 925.12 09/01/87 70.57 901.63 08/15/89 46.44 925.76 10/02/87 73.26 898.94 10/05/89 53.45 918.75 10/12/87 70.42 901.78 10/25/89 49.81 922.39 11/02/87 65 | 10/28/86 | 38.01 | 934.19 | 08/24/88 | 65.15 | 907.05 | | 12/02/86 47.39 924.81 11/30/88 58.87 913.33 01/07/87 51.87 920.33 01/05/89 58.96 913.24 01/29/87 53.96 918.24 02/16/89 56.67 915.53 03/03/87 57.42 914.78 03/16/89 52.82 919.38 03/24/87 59.21 912.99 04/19/89 49.85 922.35 05/13/87 63.24 908.96 05/17/89 48.93 923.27 07/03/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.08 925.12 09/01/87 70.57 901.63 08/15/89 46.44 925.76 10/02/87 73.26 898.94 10/05/89 53.45 918.75 10/12/87 70.42 901.78 10/25/89 49.81 922.39 10/20/87 68.11 904.09 11/29/89 47.50 924.70 11/02/87 65.23 906.97 01/03/90 46.74 925.46 12/01/87 61 | 11/04/86 | 42.86 | 929.34 | | | 907.30 | | 01/07/87 51.87 920.33 01/05/89 58.96 913.24 01/29/87 53.96 918.24 02/16/89 56.67 915.53 03/03/87 57.42 914.78 03/16/89 52.82 919.38 03/24/87 59.21 912.99 04/19/89 49.85 922.35 05/13/87 63.24 908.96 05/17/89 48.93 923.27 07/03/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.08 925.12 09/01/87 70.57 901.63 08/15/89 46.44 925.76 10/02/87 73.26 898.94 10/05/89 53.45 918.75 10/12/87 70.42 901.78 10/25/89 49.81 922.39 10/20/87 68.11 904.09 11/29/89 47.50 924.70 11/02/87 65.23 906.97 906.97 907.58 907.58 11/17/87 63.23 908.97 01/03/90 46.74 925.46 12/01/87 61. | 12/01/86 | 47.33 | 924.87 | 10/27/88 | | 911.27 | | 01/29/87 53.96 918.24 02/16/89 56.67 915.53 03/03/87 57.42 914.78 03/16/89 52.82 919.38 03/24/87 59.21 912.99 04/19/89 49.85 922.35 05/13/87 63.24 908.96 05/17/89 48.93 923.27 07/03/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.08 925.12 09/01/87 70.57 901.63 08/15/89 46.44 925.76 10/02/87 73.26 898.94 10/05/89 53.45 918.75 10/12/87 70.42 901.78 10/25/89 49.81 922.39 10/20/87 68.11 904.09 11/29/89 47.50 924.70 11/02/87 65.23 906.97 906.97 906.97 907.58 907.58 11/17/87 63.23 908.97 01/03/90 46.74 925.46 12/01/87 61.74 910.46 03/29/90 44.62 927.58 02/11 | 12/02/86 | 47.39 | 924.81 | 11/30/88 | 58.87 | 913.33 | | 01/29/87 53.96 918.24 02/16/89 56.67 915.53 03/03/87 57.42 914.78 03/16/89 52.82 919.38 03/24/87 59.21 912.99 04/19/89 49.85 922.35 05/13/87 63.24 908.96 05/17/89 48.93 923.27 07/03/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.08 925.12 09/01/87 70.57 901.63 08/15/89 46.44 925.76 10/02/87 73.26 898.94 10/05/89 53.45 918.75 10/12/87 70.42 901.78 10/25/89 49.81 922.39 10/20/87 68.11 904.09 11/29/89 47.50 924.70 11/02/87 65.23 906.97 11/17/87 63.23 908.97 01/03/90 46.74 925.46 12/01/87 61.74 910.46 03/29/90 44.62 927.58 02/11/88 58.36 913.84 05/21/90 44.18 | 01/07/87 | 51.87 | 920.33 | 01/05/89 | 58.96 | 913.24 | | 03/03/87 57.42 914.78 03/16/89 52.82 919.38 03/24/87 59.21 912.99 04/19/89 49.85 922.35 05/13/87 63.24 908.96 05/17/89 48.93 923.27 07/03/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.08 925.12 09/01/87 70.57 901.63 08/15/89 46.44 925.76 10/02/87 73.26 898.94 10/05/89 53.45 918.75 10/12/87 70.42 901.78 10/25/89 49.81 922.39 10/20/87 68.11 904.09 11/29/89 47.50 924.70 11/02/87 65.23 906.97 906.97 906.97 907.58 907.58 11/17/87 63.23 908.97 01/03/90 46.74 925.46 12/01/87 61.74 910.46 03/29/90 44.62 927.58 02/11/88 58.36 913.84 05/21/90 44.18 928.02 | 01/29/87 | 53.96 | 918.24 | | 56.67 | 915.53 | | 03/24/87 59.21 912.99 04/19/89 49.85 922.35 05/13/87 63.24 908.96 05/17/89 48.93 923.27 07/03/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.08 925.12 09/01/87 70.57 901.63 08/15/89 46.44 925.76 10/02/87 73.26 898.94 10/05/89 53.45 918.75 10/12/87 70.42 901.78 10/25/89 49.81 922.39 10/20/87 68.11 904.09 11/29/89 47.50 924.70 11/02/87 65.23 906.97 11/29/89 47.50 925.46 12/01/87 61.74 910.46 03/29/90 44.62 927.58 02/11/88 58.36 913.84 05/21/90 44.18 928.02 | 03/03/87 | 57.42 | 914.78 | | | | | 07/03/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.08 925.12 09/01/87 70.57 901.63 08/15/89 46.44 925.76 10/02/87 73.26 898.94 10/05/89 53.45 918.75 10/12/87 70.42 901.78 10/25/89 49.81 922.39 10/20/87 68.11 904.09 11/29/89 47.50 924.70 11/02/87 65.23 906.97 11/17/87 63.23 908.97 01/03/90 46.74 925.46 12/01/87 61.74 910.46 03/29/90 44.62 927.58 02/11/88 58.36 913.84 05/21/90 44.18 928.05 | 03/24/87 | 59.21 | 912.99 | 04/19/89 | 49.85 | | | 07/03/87 66.89 905.31 06/21/89 47.41 924.79 08/04/87 68.73 903.47 07/19/89 47.08 925.12 09/01/87 70.57 901.63 08/15/89 46.44 925.76 10/02/87 73.26 898.94 10/05/89 53.45 918.75 10/12/87 70.42 901.78 10/25/89 49.81 922.39 10/20/87 68.11 904.09 11/29/89 47.50 924.70 11/02/87 65.23 906.97 11/17/87 63.23 908.97 01/03/90 46.74 925.46 12/01/87 61.74 910.46 03/29/90 44.62 927.58 02/11/88 58.36 913.84 05/21/90 44.18 928.02 | 05/13/87 | 63.24 | 908.96 | 10. | | | | 08/04/87 68.73 903.47 07/19/89 47.08 925.12 09/01/87 70.57 901.63 08/15/89 46.44 925.76 10/02/87 73.26 898.94 10/05/89 53.45 918.75 10/12/87 70.42 901.78 10/25/89 49.81 922.39 10/20/87 68.11 904.09 11/29/89 47.50 924.70 11/02/87 65.23 906.97 11/17/87 63.23 908.97 01/03/90 46.74 925.46 12/01/87 61.74 910.46 03/29/90 44.62 927.58 02/11/88 58.36 913.84 05/21/90 44.18 928.02 | 07/03/87 | 66.89 | | CARONELES DE CONTROL DE LA CON | | | | 09/01/87 70.57 901.63 08/15/89 46.44 925.76 10/02/87 73.26 898.94 10/05/89 53.45 918.75 10/12/87 70.42 901.78 10/25/89 49.81 922.39 10/20/87 68.11 904.09 11/29/89 47.50 924.70 11/02/87 65.23 906.97 11/17/87 63.23 908.97 01/03/90 46.74 925.46 12/01/87 61.74 910.46 03/29/90 44.62 927.58 02/11/88 58.36 913.84 05/21/90 44.18 928.02 | 08/04/87 | | 903.47 | 07/19/89 | | | | 10/02/87 73.26 898.94 10/05/89 53.45 918.75 10/12/87 70.42 901.78 10/25/89 49.81 922.39 10/20/87 68.11 904.09 11/29/89 47.50 924.70 11/02/87 65.23 906.97 11/17/87 63.23 908.97 01/03/90 46.74 925.46 12/01/87 61.74 910.46 03/29/90 44.62 927.58 02/11/88 58.36 913.84 05/21/90 44.18 928.02 | | | | | | | | 10/12/87 70.42 901.78 10/25/89 49.81 922.39 10/20/87 68.11 904.09 11/29/89 47.50 924.70 11/02/87 65.23 906.97 11/17/87 63.23 908.97 01/03/90 46.74 925.46 12/01/87 61.74 910.46 03/29/90 44.62 927.58 02/11/88 58.36 913.84 05/21/90 44.18 928.02 | | | | | | | | 10/20/87 68.11 904.09 11/29/89 47.50 924.70 11/02/87 65.23 906.97 11/17/87 63.23 908.97 01/03/90 46.74 925.46 12/01/87 61.74 910.46 03/29/90 44.62 927.58 02/11/88 58.36 913.84 05/21/90 44.18 928.02 | | | | | | | | 11/02/87 65.23 906.97 11/17/87 63.23 908.97 01/03/90
46.74 925.46 12/01/87 61.74 910.46 03/29/90 44.62 927.58 02/11/88 58.36 913.84 05/21/90 44.18 928.02 | | | | | | | | 11/17/87 63.23 908.97 01/03/90 46.74 925.46 12/01/87 61.74 910.46 03/29/90 44.62 927.58 02/11/88 58.36 913.84 05/21/90 44.18 928.02 | | | | | | 1 / X | | 12/01/87 61.74 910.46 03/29/90 44.62 927.58 04/23/90 44.15 928.05 02/11/88 58.36 913.84 05/21/90 44.18 928.02 | | | | 01/03/90 | 46.74 | 925.46 | | 04/23/90 44.15 928.05
02/11/88 58.36 913.84 05/21/90 44.18 928.02 | | | | THE SAME SHOWN AND THE REST | | | | 02/11/88 58.36 913.84 05/21/90 44.18 928.02 | | | | | | | | | 02/11/88 | 58.36 | 913.84 | | | | | | The section of the section with the section of | | | | | | 133-047-20ABDBA3 LS Elev (msl,ft)=971.7 Wahpeton Shallow Sand Aguifer SI (ft.)=115-120 | Wahbeton Shallow Sand Aguifer SI (ft.) | | t.) = 115 - 120 | | | |--|---|---|--|--| | Depth to | WL Elev | | Depth to | WL Elev | | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 34.02 | 937.68 | 06/23/88 | 56.89 | 914.81 | | 34.09 | 937.61 | 06/30/88 | 57.73 | 913.97 | | 37.47 | 934.23 | 07/27/88 | 61.85 | 909.85 | | 42.79 | 928.91 | 08/24/88 | 64.95 | 906.75 | | 47.30 | 924.40 | 09/30/88 | 64.55 | 907.15 | | 47.30 | 924.40 | 10/27/88 | 60.53 | 911.17 | | | | 11/30/88 | 58.44 | 913.26 | | 51.78 | 919.92 | | | | | 53.87 | 917.83 | 02/16/89 | 56.16 | 915.54 | | 57.29 | 914.41 | 03/16/89 | 52.34 | 919.36 | | 59.10 | 912.60 | 04/19/89 | 49.37 | 922.33 | | 63.15 | 908.55 | 05/17/89 | 48.46 | 923.24 | | 66.81 | 904.89 | 06/21/89 | 46.87 | 924.83 | | 68.62 | 903.08 | 07/19/89 | 46.50 | 925.20 | | 70.40 | 901.30 | 08/15/89 | 45.82 | 925.88 | | 73.12 | 898.58 | 10/05/89 | 53.26 | 918.44 | | 70.06 | 901.64 | 10/25/89 | 49.29 | 922.41 | | 67.69 | 904.01 | 11/29/89 | 46.93 | 924.77 | | 64.71 | 906.99 | 200 | | | | 62.81 | 908.89 | 01/03/90 | 46.02 | 925.68 | | 61.38 | 910.32 | 03/29/90 | 44.04 | 927.66 | | | | 04/23/90 | 43.55 | 928.15 | | 57.88 | 913.82 | 05/21/90 | 43.59 | 928.11 | | 57.78 | 913.92 | 06/14/90 | 43.62 | 928.08 | | | Depth to Water (ft) 34.02 34.09 37.47 42.79 47.30 47.30 51.78 53.87 57.29 59.10 63.15 66.81 68.62 70.40 73.12 70.06 67.69 64.71 62.81 61.38 | Depth to WL Elev Water (ft) (msl, ft) 34.02 937.68 34.09 937.61 37.47 934.23 42.79 928.91 47.30 924.40 47.30 924.40 51.78 919.92 53.87 917.83 57.29 914.41 59.10 912.60 63.15 908.55 66.81 904.89 68.62 903.08 70.40 901.30 73.12 898.58 70.06 901.64 67.69 904.01 64.71 906.99 62.81 908.89 61.38 910.32 | Depth to WL Elev Water (ft) (msl, ft) Date 34.02 937.68 06/23/88 34.09 937.61 06/30/88 37.47 934.23 07/27/88 42.79 928.91 08/24/88 47.30 924.40 09/30/88 47.30 924.40 10/27/88 11/30/88 51.78 919.92 53.87 917.83 02/16/89 57.29 914.41 03/16/89 59.10 912.60 04/19/89 63.15 908.55 05/17/89 66.81 904.89 06/21/89 68.62 903.08 07/19/89 70.40 901.30 08/15/89 70.40 901.30 08/15/89 73.12 898.58 10/05/89 70.06 901.64 10/25/89 67.69 904.01 11/29/89 64.71 906.99 62.81 908.89 01/03/90 61.38 910.32 03/29/90 57.88 913.82 05/21/90 | Depth to Water (ft) WL Elev (msl, ft) Date Depth to Water (ft) 34.02 937.68 06/23/88 56.89 34.09 937.61 06/30/88 57.73 37.47 934.23 07/27/88 61.85 42.79 928.91 08/24/88 64.95 47.30 924.40 09/30/88 64.55 47.30 924.40 10/27/88 60.53 11/30/88 58.44 51.78 919.92 53.87 917.83 02/16/89 56.16 57.29 914.41 03/16/89 52.34 59.10 912.60 04/19/89 49.37 63.15 908.55 05/17/89 48.46 66.81 904.89 06/21/89 46.87 68.62 903.08 07/19/89 46.50 70.40 901.30 08/15/89 45.82 73.12 898.58 10/05/89 53.26 70.06 901.64 10/25/89 49.29 67.69 | | 133-047-20ABDBD1 | LS Elev $(msl,ft)=972.26$ | |-------------------------------|---------------------------| | Wahpeton Shallow Sand Aquifer | SI (ft.)=114-119 | | Wahpeton Shallow Sand Aquifer | | | | ft.) = 114 - 119 | | |-------------------------------|------------------------|----------------------|--------|------------------------|-------------------| | Date | Depth to
Water (ft) | WL Elev
(msl, ft) | Date | Depth to
Water (ft) | WL Elev (msl, ft) | | 08/28/86 | 37.57 | 934.69 | 06/23/ | ′88 57.16 | 915.10 | | 09/17/86 | 34.78 | 937.48 | 06/30/ | ^{'88} 57.79 | 914.47 | | 09/30/86 | 34.51 | 937.75 | 07/27/ | ^{'88} 61.92 | 910.34 | | 10/08/86 | 34.56 | 937.70 | 08/24/ | ^{'88} 65.02 | 907.24 | | 10/28/86 | 37.98 | 934.28 | 09/30/ | ′88 64 . 90 | 907.36 | | 11/04/86 | 42.75 | 929.51 | 10/27/ | '88 60.96 | 911.30 | | 12/01/86 | 47.16 | 925.10 | 11/30/ | '88 58.92 | 913.34 | | 12/02/86 | 47.18 | 925.08 | | | | | | | | 01/04/ | 789 58.89 | 913.37 | | 01/07/87 | 51.64 | 920.62 | 02/16/ | ^{'89} 56.69 | 915.57 | | 01/29/87 | 53.74 | 918.52 | 03/16/ | /89 52.82 | 919.44 | | 03/03/87 | 57.20 | 915.06 | 04/19/ | 49.86 | 922.40 | | 03/24/87 | 58.99 | 913.27 | 05/17/ | ^{'89} 48.93 | 923.33 | | 05/13/87 | 63.03 | 909.23 | 06/21/ | 47.32 | 924.94 | | 07/03/87 | 66.76 | 905.50 | 07/19/ | 47.02 | 925.24 | | 08/04/87 | 68.61 | 903.65 | 08/15/ | ^{'89} 46.39 | 925.87 | | 09/01/87 | 70.50 | 901.76 | 10/05/ | 789 53.27 | 918.99 | | 10/02/87 | 73.11 | 899.15 | 10/25/ | 49.79 | 922.47 | | 10/12/87 | 70.39 | 901.87 | 11/29/ | '89 47.4 0 | 924.86 | | 10/20/87 | 68.09 | 904.17 | | | | | 11/02/87 | 65.19 | 907.07 | 01/03/ | 90 46.54 | 925.72 | | 11/17/87 | 63.20 | 909.06 | 03/29/ | 90 44.60 | 927.66 | | 12/01/87 | 61.72 | 910.54 | 04/23/ | 90 44.12 | 928.14 | | | | | 05/21/ | 90 44.21 | 928.05 | | 02/11/88 | 58.34 | 913.92 | 06/14/ | | 928.08 | | 04/22/88 | 58.06 | 914.20 | | | | | 133-047-20ABDBD2 | LS Elev $(msl, ft) = 972.14$ | |-------------------------------|------------------------------| | Wahneton Shallow Sand Aquifer | ST 1ft 1-53-58 | | wanbeton | Snallow Sand A | Rduller | 0.00 | 21 | (IC./=33-38 | |----------|----------------|-----------|------------|------------|-------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 00/17/06 | 24.60 | 007 50 | 05 (17 (00 | 40.70 | 000 00 | | 09/17/86 | 34.62 | 937.52 | 05/17/89 | 48.78 | 923.36 | | 09/30/86 | 34.35 | 937.79 | 06/21/89 | 47.20 | 924.94 | | 10/08/86 | 34.40 | 937.74 | 07/19/89 | 46.88 | 925.26 | | 10/21/86 | 41.23 | 930.91 | 08/15/89 | 46.25 | 925.89 | | 10/28/86 | 37.79 | 934.35 | 10/05/89 | 53.07 | 919.07 | | 11/04/86 | 42.45 | 929.69 | 10/25/89 | 49.66 | 922.48 | | 12/01/86 | 46.91 | 925.23 | 11/29/89 | 47.97 | 924.17 | | 12/02/86 | 46.91 | 925.23 | | | | | | | | 01/03/90 | 46.39 | 925.75 | | 01/07/87 | 51.41 | 920.73 | 03/29/90 | 44.48 | 927.66 | | 01/29/87 | 53.53 | 918.61 | 04/23/90 | 43.99 | 928.15 | | | | | 05/21/90 | 44.04 | 928.10 | | 04/19/89 | 49.72 | 922.42 | 06/14/90 | 44.06 | 928.08 | | | | | | | | | Wahpeton | Buried Vallev | | | | t.1 = 278 - 283 | |----------|---------------|-----------|-------------|------------|-----------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 10/17/85 | 66.08 | 917.20 | 11/03/87 | 72.16 | 911.12 | | 10/23/85 | 68.88 | 914.40 | 12/01/87 | 70.94 | 912.34 | | 10/24/85 | 66.27 | 917.01 | | | | | 11/01/85 | 66.38 | 916.90 | 02/11/88 | 71.41 | 911.87 | | 11/13/85 | 65.58 | 917.70 | 04/22/88 | 70.89 | 912.39 | | 12/10/85 | 65.56 | 917.72 | 06/23/88 | 82.41 | 900.87 | | 12/11/85 | 65.75 | 917.53 | 06/30/88 | 83.04 | 900.24 | | | | | 07/27/88 | 80.71 | 902.57 | | 04/10/86 | 67.52 | 915.76 | 08/23/88 | 76.18 | 907.10 | | 05/15/86 | 66.23 | 917.05 | 09/30/88 | 74.68 | 908.60 | | 09/17/86 | 73.42 | 909.86 | 10/27/88 | 73.27 | 910.01 | | 09/30/86 | 69.57 | 913.71 | 11/30/88 | 71.27 | 912.01 | | 10/08/86 | 67.63 | 915.65 | * | | | | 10/09/86 | 67.55 | 915.73 | 01/04/89 | 72.34 | 910.94 | | 10/10/86 | 67.03 | 916.25 | 02/16/89 | 71.58 | 911.70 | | 10/11/86 | 66.79 | 916.49 | 03/16/89 | 71.82 | 911.46 | | 10/15/86 | 67.14 | 916.14 | 04/19/89 | 73.01 | 910.27 | | 10/28/86 | 67.66 | 915.62 | 05/17/89 | 81.84 | 901.44 | | 11/04/86 | 87.59 | 895.69 |
06/21/89 | 78.12 | 905.16 | | 12/01/86 | 90.74 | 892.54 | 07/19/89 | 82.32 | 900.96 | | 12/02/86 | 89.50 | 893.78 | 08/15/89 | 83.43 | 899.85 | | | | | 10/05/89 | 74.22 | 909.06 | | 01/07/87 | 92.51 | 890.77 | 10/25/89 | 73.15 | 910.13 | | 01/29/87 | 87.78 | 895.50 | 11/29/89 | 72.44 | 910.84 | | 03/03/87 | 94.36 | 888.92 | | | | | 03/24/87 | 95.28 | 888.00 | 01/03/90 | 71.60 | 911.68 | | 05/14/87 | 77.52 | 905.76 | 03/30/90 | 70.28 | 913.00 | | 07/03/87 | 78.74 | 904.54 | 04/23/90 | 74.43 | 908.85 | | 08/04/87 | 75.29 | 907.99 | 05/21/90 | 73.55 | 909.73 | | 00/01/07 | 75 71 | 007 57 | 06/14/00 | 76 20 | 006 00 | 907.99 907.57 09/01/87 75.71 05/21/90 06/14/90 76.38 909.73 906.90 | 100 015 0000000 | | |-----------------------------|--------------------------| | 133-047-20ABDC2 | LS Elev $(msl,ft)=983.4$ | | Wahneton Sand Plain Aguifer | CT (ft) 120 122 | | Wahpeton Sand Plain Aguifer | | SI (ft.)=128-133 | | | | |-----------------------------|------------|------------------|----------|------------|-----------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 10/17/85 | 66.10 | 917.30 | 11/03/87 | 72.18 | 911.22 | | 10/23/85 | 68.90 | 914.50 | 12/01/87 | 70.90 | 912.50 | | 10/24/85 | 66.28 | 917.12 | | | | | 11/01/85 | 66.80 | 916.60 | 02/11/88 | 71.45 | 911.95 | | 11/13/85 | 65.61 | 917.79 | 04/22/88 | 70.93 | 912.47 | | 12/10/85 | 65.57 | 917.83 | 06/23/88 | 82.48 | 900.92 | | 12/11/85 | 65.76 | 917.64 | 06/30/88 | 83.12 | 900.28 | | | | | 07/27/88 | 80.79 | 902.61 | | 04/10/86 | 67.57 | 915.83 | 08/23/88 | 76.23 | 907.17 | | 05/15/86 | 66.31 | 917.09 | 09/30/88 | 74.73 | 908.67 | | 09/17/86 | 73.66 | 909.74 | 10/27/88 | 73.32 | 910.08 | | 09/30/86 | 69.63 | 913.77 | 11/30/88 | 71.31 | 912.09 | | 10/08/86 | 67.71 | 915.69 | | | | | 10/09/86 | 67.62 | 915.78 | 01/04/89 | 72.42 | 910.98 | | 10/10/86 | 67.10 | 916.30 | 02/16/89 | 71.64 | 911.76 | | 10/11/86 | 66.87 | 916.53 | 03/16/89 | 71.91 | 911.49 | | 10/15/86 | 67.22 | 916.18 | 04/19/89 | 73.08 | 910.32 | | 10/28/86 | 67.74 | 915.66 | 05/17/89 | 81.87 | 901.53 | | 11/04/86 | 87.69 | 895.71 | 06/21/89 | 78.19 | 905.21 | | 12/01/86 | 90.83 | 892.57 | 07/19/89 | 82.39 | 901.01 | | 12/02/86 | 89.61 | 893.79 | 08/15/89 | 83.54 | 899.86 | | | | | 10/05/89 | 74.32 | 909.08 | | 01/07/87 | 92.62 | 890.78 | 10/25/89 | 73.23 | 910.17 | | 01/29/87 | 87.91 | 895.49 | 11/29/89 | 72.55 | 910.85 | | 03/03/87 | 94.48 | 888.92 | | | | | 03/24/87 | 95.32 | 888.08 | 01/03/90 | 71.70 | 911.70 | | 05/14/87 | 77.62 | 905.78 | 03/30/90 | 70.36 | 913.04 | | 07/03/87 | 78.78 | 904.62 | 04/23/90 | 74.52 | 908.88 | | 08/04/87 | 75.33 | 908.07 | 05/21/90 | 73.65 | 909.75 | | 09/01/87 | 75.76 | 907.64 | 06/14/90 | 76.47 | 906.93 | 133-047-20ABDC3 LS Elev (msl,ft)=983.26 | Wahpeton | Shallow Sand | Aguifer | | SI | (ft.) = 67 - 72 | |----------|--------------|-----------|----------|------------|-----------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 10/17/85 | 46.03 | 937.23 | 01/29/87 | 61.87 | 921.39 | | 10/23/85 | 46.18 | 937.08 | 03/03/87 | 65.30 | 917.96 | | 10/24/85 | 46.40 | 936.86 | 03/25/87 | 67.29 | 915.97 | | 11/01/85 | 46.28 | 936.98 | 05/13/87 | 71.39 | 911.87 | | 11/13/85 | 46.30 | 936.96 | | ,_,,, | ,,,,,, | | 12/10/85 | 46.37 | 936.89 | 02/11/88 | 69.85 | 913.41 | | 12/11/85 | 46.22 | 937.04 | 04/22/88 | 68.15 | 915.11 | | | | | 06/23/88 | 67.30 | 915.96 | | 04/10/86 | 45.89 | 937.37 | 06/30/88 | 67.11 | 916.15 | | 05/15/86 | 45.49 | 937.77 | 07/27/88 | 70.53 | 912.73 | | 09/17/86 | 45.57 | 937.69 | | | | | 09/30/86 | 45.43 | 937.83 | 05/17/89 | 60.19 | 923.07 | | 10/08/86 | 45.49 | 937.77 | 06/21/89 | 58.65 | 924.61 | | 10/09/86 | 46.06 | 937.20 | 07/19/89 | 58.15 | 925.11 | | 10/10/86 | 46.04 | 937.22 | 08/15/89 | 57.48 | 925.78 | | 10/11/86 | 46.81 | 936.45 | 10/05/89 | 61.23 | 922.03 | | 10/15/86 | 48.15 | 935.11 | 10/25/89 | 61.17 | 922.09 | | 10/20/86 | 49.54 | 933.72 | 11/29/89 | 58.59 | 924.67 | | 10/28/86 | 48.99 | 934.27 | | | | | 11/04/86 | 50.76 | 932.50 | 01/03/90 | 57.65 | 925.61 | | 12/01/86 | 55.10 | 928.16 | 03/29/90 | 55.78 | 927.48 | | 12/02/86 | 55.16 | 928.10 | 04/23/90 | 55.29 | 927.97 | | 3. | | | 05/21/90 | 55.33 | 927.93 | | 01/07/87 | 59.76 | 923.50 | 06/14/90 | 55.33 | 927.93 | | 133-047-20ABDDA2
Undefined Aguifer | | | LS Elev (msl, | posterio del 1811 | | |---------------------------------------|------------|-----------|---------------|--|------------| | underined | Adulier | | | SI | (ft.)=9-12 | | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | Depth to | WL Elev | | Depth to | WL Elev | |----------|------------|-----------|----------|------------|-----------| | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | | , | | | | | 09/04/85 | 4.50 | 965.74 | 09/25/85 | 4.66 | 965.58 | | 09/05/85 | 4.41 | 965.83 | 10/03/85 | 5.01 | 965.23 | | 09/06/85 | 4.36 | 965.88 | 10/09/85 | 5.30 | 964.94 | | 09/09/85 | 3.37 | 966.87 | 10/15/85 | 4.71 | 965.53 | | 09/10/85 | 3.21 | 967.03 | 10/23/85 | 5.08 | 965.16 | | 09/11/85 | 3.11 | 967.13 | 10/24/85 | 5.19 | 965.05 | | 09/12/85 | 3.30 | 966.94 | 11/01/85 | 5.28 | 964.96 | | 09/18/85 | 4.17 | 966.07 | | | | | | -20ABDDA3 | | | LS Elev (msl | | |----------|---------------|-----------|----------|--------------|-------------| | Wahpeton | Buried Vallev | | | | t.)=268-273 | | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 09/04/85 | 54.61 | 915.40 | 01/07/87 | 81.13 | 888.88 | | 09/05/85 | 57.71 | 912.30 | 01/29/87 | 74.44 | 895.57 | | 09/06/85 | 57.73 | 912.28 | 03/03/87 | 82.67 | 887.34 | | 09/09/85 | 56.33 | 913.68 | 05/14/87 | 64.31 | 905.70 | | 09/10/85 | 54.49 | 915.52 | 07/03/87 | 66.54 | 903.47 | | 09/11/85 | 55.01 | 915.00 | 08/04/87 | 61.82 | 908.19 | | 09/12/85 | 54.05 | 915.96 | 08/31/87 | 64.93 | 905.08 | | 09/18/85 | 53.81 | 916.20 | 11/03/87 | 58.32 | 911.69 | | 09/25/85 | 55.01 | 915.00 | 12/01/87 | 57.29 | 912.72 | | 10/03/85 | 55.00 | 915.01 | | | | | 10/09/85 | 55.61 | 914.40 | 04/22/88 | 57.59 | 912.42 | | 10/15/85 | 54.49 | 915.52 | 06/23/88 | 70.41 | 899.60 | | 10/17/85 | 52.66 | 917.35 | 06/30/88 | 71.23 | 898.78 | | 10/23/85 | 55.72 | 914.29 | 07/27/88 | 67.77 | 902.24 | | 10/24/85 | 52.81 | 917.20 | 08/23/88 | 62.55 | 907.46 | | 11/01/85 | 53.08 | 916.93 | 09/30/88 | 62.50 | 907.51 | | 11/13/85 | 52.20 | 917.81 | 10/27/88 | 59.78 | 910.23 | | 12/10/85 | 52.25 | 917.76 | 11/30/88 | 57.71 | 912.30 | | 12/11/85 | 52.36 | 917.65 | | | | | | | | 01/04/89 | 58.91 | 911.10 | | 04/10/86 | 54.10 | 915.91 | 02/16/89 | 58.01 | 912.00 | | 05/15/86 | 52.95 | 917.06 | 03/16/89 | 58.27 | 911.74 | | 08/27/86 | 66.21 | 903.80 | 04/19/89 | 59.81 | 910.20 | | 09/17/86 | 59.99 | 910.02 | 05/17/89 | 67.50 | 902.51 | | 09/30/86 | 56.47 | 913.54 | 06/21/89 | 64.38 | 905.63 | | 10/07/86 | 54.71 | 915.30 | 07/19/89 | 68.90 | 901.11 | | 10/08/86 | 54.43 | 915.58 | 08/15/89 | 71.77 | 898.24 | | 10/09/86 | 54.35 | 915.66 | 10/05/89 | 60.81 | 909.20 | | 10/10/86 | 53.83 | 916.18 | 10/25/89 | 59.76 | 910.25 | | 10/11/86 | 53.57 | 916.44 | 11/29/89 | 58.71 | 911.30 | | 10/15/86 | 53.87 | 916.14 | | | | | 10/28/86 | 54.43 | 915.58 | 01/03/90 | 57.93 | 912.08 | | 11/04/86 | 76.02 | 893.99 | 03/30/90 | 56.97 | 913.04 | | 12/01/86 | 78.69 | 891.32 | 04/23/90 | 61.14 | 908.87 | | 12/02/86 | 77.68 | 892.33 | 05/21/90 | 60.77 | 909.24 | | | | | 06/13/90 | 63.08 | 906.93 | 133-047-20ABDDA4 LS Elev (msl,ft)=970.25 | Wahpeton | Buried Valley | Aguifer | | SI (f | t.)=178-183 | |----------|---------------|-----------|------------|------------|-------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | | | | | | | 09/04/85 | 55.14 | 915.11 | 04/21/88
 57.80 | 912.45 | | 09/05/85 | 57.36 | 912.89 | 06/23/88 | 70.10 | 900.15 | | 09/06/85 | 57.83 | 912.42 | 06/30/88 | 70.84 | 899.41 | | 09/09/85 | 56.60 | 913.65 | 07/27/88 | 68.00 | 902.25 | | 09/10/85 | 54.75 | 915.50 | 08/23/88 | 62.79 | 907.46 | | 09/11/85 | 55.15 | 915.10 | . 09/30/88 | 62.73 | 907.52 | | 09/12/85 | 54.28 | 915.97 | 10/27/88 | 59.99 | 910.26 | | 09/18/85 | 54.04 | 916.21 | 11/30/88 | 57.97 | 912.28 | | 09/25/85 | 55.22 | 915.03 | | | | | 10/03/85 | 55.23 | 915.02 | 01/04/89 | 59.12 | 911.13 | | 10/09/85 | 55.83 | 914.42 | 02/16/89 | 58.27 | 911.98 | | 10/15/85 | 54.73 | 915.52 | 03/16/89 | 58.49 | 911.76 | | 10/17/85 | 52.90 | 917.35 | 04/19/89 | 60.02 | 910.23 | | 10/23/85 | 55.95 | 914.30 | 05/17/89 | 67.73 | 902.52 | | 10/24/85 | 53.06 | 917.19 | 06/21/89 | 64.60 | 905.65 | | 11/01/85 | 53.31 | 916.94 | 07/19/89 | 69.15 | 901.10 | | 11/13/85 | 52.45 | 917.80 | 08/15/89 | 71.32 | 898.93 | | 12/10/85 | 52.49 | 917.76 | 10/05/89 | 61.03 | 909.22 | | 12/11/85 | 52.63 | 917.62 | 10/25/89 | 59.98 | 910.27 | | | | | 11/29/89 | 58.90 | 911.35 | | 04/10/86 | 54.10 | 916.15 | | | | | 05/15/86 | 53.17 | 917.08 | 01/03/90 | 59.06 | 911.19 | | 08/27/86 | 66.46 | 903.79 | 03/30/90 | 57.20 | 913.05 | | 09/17/86 | 60.21 | 910.04 | 04/23/90 | 61.36 | 908.89 | | 09/30/86 | 56.94 | 913.31 | 05/21/90 | 60.96 | 909.29 | | | | | 06/13/90 | 63.33 | 906.92 | | | | | | | | | Wahpeton | Sand Plain Act | uifer | | SI (f | t.) = 113 - 118 | |------------|------------------------|-------------------|----------------------|------------------------|----------------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 09/04/85 | 54.63 | 915.27 | 01/07/87 | 80.17 | 889.73 | | 09/05/85 | 56.86 | 913.04 | 01/29/87 | 74.28 | 895.62 | | 09/06/85 | 57.31 | 912.59 | 03/03/87 | 81.89 | 888.01 | | 09/09/85 | 56.20 | 913.70 | 05/14/87 | 64.12 | 905.78 | | 09/10/85 | 54.31 | 915.59 | 07/03/87 | 65.53 | 904.37 | | 09/11/85 | 54.81 | 915.09 | 08/04/87 | 61.63 | 908.27 | | 09/12/85 | 53.87 | 916.03 | 08/31/87 | 64.75 | 905.15 | | 09/18/85 | 53.62 | 916.28 | 11/03/87 | 58.24 | 911.66 | | 09/25/85 | 54.81 | 915.09 | 12/01/87 | 57.06 | 912.84 | | 10/03/85 | 54.80 | 915.10 | | | | | 10/09/85 | 55.43 | 914.47 | 04/22/88 | 57.38 | 912.52 | | 10/15/85 | 54.34 | 915.56 | 06/23/88 | 69.50 | 900.40 | | 10/17/85 | 52.47 | 917.43 | 06/30/88 | 70.28 | 899.62 | | 10/23/85 | 55.56 | 914.34 | 07/27/88 | 67.59 | 902.31 | | 10/24/85 | 52.65 | 917.25 | 08/23/88 | 62.35 | 907.55 | | 11/01/85 | 52.90 | 917.00 | 09/30/88 | 62.32 | 907.58 | | 11/13/85 | 52.05 | 917.85 | 10/27/88 | 59.58 | 910.32 | | 12/10/85 | 52.10 | 917.80 | 11/30/88 | 57.55 | 912.35 | | 12/11/85 | 52.27 | 917.63 | | | | | | 50 50 | | 01/04/89 | 58.73 | 911.17 | | 04/10/86 | 53.79 | 916.11 | 02/16/89 | 57.83 | 912.07 | | 05/15/86 | 52.76 | 917.14 | 03/16/89 | 58.08 | 911.82 | | 08/27/86 | 66.03 | 903.87 | 04/19/89 | 59.62 | 910.28 | | 09/17/86 | 59.78 | 910.12 | 05/17/89 | 67.34 | 902.56 | | 09/30/86 | 56.29 | 913.61 | 06/21/89 | 64.16 | 905.74 | | 10/07/86 | 54.54 | 915.36 | 07/19/89 | 68.70 | 901.20 | | 10/08/86 | 54.26 | 915.64 | 08/15/89 | 70.76 | 899.14 | | 10/09/86 | 54.08 | 915.82 | 10/05/89 | 60.63 | 909.27 | | 10/10/86 | 53.65 | 916.25 | 10/25/89 | 59.55 | 910.35 | | 10/11/86 | 53.40 | 916.50 | 11/29/89 | 58.52 | 911.38 | | 10/15/86 | 53.69
54.25 | 916.21 | 01 /02 /00 | E0 76 | 011 14 | | 10/28/86 | | 915.65 | 01/03/90 | | 911.14 | | 11/04/86 | 75.06
77.74 | 894.84
892.16 | 03/30/90 | 56.79 | 913.11 | | 12/01/86 | 76.73 | 892.16 | 04/23/90 | 60.96 | 908.94 | | 12/02/86 | 70.73 | 893.17 | 05/21/90
06/13/90 | 60.65
62.88 | 909.25
907.02 | | 133-047- | 20ABDDA6 | | | LS Elev (msl | ft)=969.93 | | Wahpeton : | Shallow Sand A | | · | SI | (ft.)=36-41 | | Date | Depth to
Water (ft) | WL Elev (msl, ft) | Date | Depth to
Water (ft) | WL Elev
(msl, ft) | | 09/04/85 | 32.92 | 937.01 | 12/10/85 | 33.09 | 936.84 | | 09/05/85 | 32.89 | 937.04 | 12/11/85 | 32.83 | 937.10 | | 09/06/85 | 33.04 | 936.89 | ,, | | 200 | | 09/09/85 | 33.06 | 936.87 | 04/10/86 | 32.56 | 937.37 | | 09/10/85 | 33.21 | 936.72 | 05/15/86 | 32.12 | 937.81 | | 09/11/85 | 33.13 | 936.80 | 08/27/86 | 32.24 | 937.69 | | 09/12/85 | 33.03 | 936.90 | 09/17/86 | 32.28 | 937.65 | | 09/18/85 | 32.99 | 936.94 | 09/30/86 | 32.12 | 937.81 | | 09/25/85 | 33 00 | 036 03 | 10/00/06 | 22.20 | 027.72 | 10/08/86 10/09/86 10/10/86 10/11/86 10/15/86 10/20/86 10/28/86 11/04/86 32.20 32.82 32.70 33.53 34.81 36.16 35.85 37.47 937.73 937.11 937.23 936.40 935.12 933.77 934.08 932.46 09/25/85 10/03/85 10/09/85 10/15/85 10/17/85 10/23/85 10/24/85 11/01/85 11/13/85 33.00 32.84 32.93 33.07 32.71 32.90 33.14 32.98 33.04 936.93 937.09 937.00 936.86 937.22 937.03 936.79 936.95 936.89 133-047-20ABDDA7 LS Elev (msl,ft)=970 | Wahpeton J | Buried Valley | Aguifer | SI (ft.)=269-27 | | | | | |------------|---------------------------|-----------|------------------------------|------------------|-----------|--|--| | | Depth to | WL Elev | | Depth to | WL Elev | | | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | | 09/09/85 | 56.29 | 913.71 | 03/03/87 | 82.23 | 887.77 | | | | 09/10/85 | 54.58 | 915.42 | 03/25/87 | 78.38 | 891.62 | | | | 09/11/85 | 55.09 | 914.91 | 05/14/87 | 65.23 | 904.77 | | | | 09/12/85 | 53.82 | 916.18 | 07/03/87 | 66.01 | 903.99 | | | | 09/18/85 | 53.93 | 916.07 | 08/04/87 | 61.79 | 908.21 | | | | 09/25/85 | 54.06 | 915.94 | 08/31/87 | 64.80 | 905.20 | | | | 10/03/85 | 55.05 | 914.95 | 11/03/87 | 58.42 | 911.58 | | | | 10/09/85 | 55.60 | 914.40 | 12/01/87 | 57.26 | 912.74 | | | | 10/15/85 | 54.52 | 915.48 | | | | | | | 10/17/85 | 52.75 | 917.25 | 04/22/88 | 57.52 | 912.48 | | | | 10/23/85 | 55.72 | 914.28 | 06/23/88 | 69.83 | 900.17 | | | | 10/24/85 | 52.92 | 917.08 | 06/27/88 | 70.54 | 899.46 | | | | 11/01/85 | 53.13 | 916.87 | 06/30/88 | 70.54 | 899.46 | | | | 11/13/85 | 52.30 | 917.70 | 07/27/88 | 67.61 | 902.39 | | | | 12/09/85 | | 916.39 | 08/23/88 | 62.54 | 907.46 | | | | 12/10/85 | 52.35 | 917.65 | 09/30/88 | 62.39 | 907.61 | | | | 12/11/85 | 52.50 | 917.50 | 10/27/88 | 59.77 | 910.23 | | | | | | | 11/30/88 | 57.75 | 912.25 | | | | 03/04/86 | 51.98 | 918.02 | | | | | | | 04/10/86 | 54.08 | 915.92 | 01/04/89 | 58.91 | 911.09 | | | | 05/15/86 | 53.17 | 916.83 | 02/16/89 | 58.04 | 911.96 | | | | 09/17/86 | 60.13 | 909.87 | 03/16/89 | 58.25 | 911.75 | | | | 09/30/86 | 56.45 | 913.55 | 04/19/89 | 59.69 | 910.31 | | | | 10/07/86 | 54.76 | 915.24 | 05/17/89 | 67.44 | 902.56 | | | | 10/08/86 | 54.47 | 915.53 | 06/21/89 | 64.34 | 905.66 | | | | 10/09/86 | 54.38 | 915.62 | 07/19/89 | 68.87 | 901.13 | | | | 10/10/86 | 53.88 | 916.12 | 08/15/89 | 71.09 | 898.91 | | | | 10/11/86 | 53.62 | 916.38 | 10/05/89 | 60.77 | 909.23 | | | | 10/15/86 | 53.92 | 916.08 | 10/25/89 | 59.67 | 910.33 | | | | 10/28/86 | 54.48 | 915.52 | 11/29/89 | 58.69 | 911.31 | | | | 11/04/86 | 75.56 | 894.44 | PRODUCT DESCRIPTION OF STATE | 100 CM 16 100/CC | - | | | | 12/01/86 | 78.40 | 891.60 | 01/03/90 | 58.86 | 911.14 | | | | 12/02/86 | 77.27 | 892.73 | 03/30/90 | 56.92 | 913.08 | | | | | 31 % G (35 45 | | 04/23/90 | 61.06 | 908.94 | | | | 01/07/87 | 80.57 | 889.43 | 05/21/90 | 60.58 | 909.42 | | | | 01/29/87 | 74.55 | 895.45 | 06/13/90 | 63.09 | 906.91 | | | 133-047-20ABDDA8 | LS Elev | (msl,ft |) = 970.18 | |---------|---------|------------| |---------|---------|------------| | Wahpeton | Sand Plain Acr | uifer | | | t.)=112-117 | |----------|----------------|-----------|----------|------------|-------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 09/10/85 | 55.11 | 915.07 | 03/25/87 | 78.39 | 891.79 | | 09/11/85 | 55.09 | 915.09 | 05/14/87 | 64.26 | 905.92 | | 09/12/85 | 53.77 | 916.41 | 07/03/87 | 65.71 | 904.47 | | 09/18/85 | 53.96 | 916.22 | 08/04/87 | 61.82 | 908.36 | | 09/25/85 | 55.12 | 915.06 | 08/31/87 | 64.82 | 905.36 | | 10/03/85 | 55.02 | 915.16 | 11/03/87 | 58.88 | 911.30 | | 10/09/85 | 55.51 | 914.67 | 12/01/87 | 56.34 | 913.84 | | 10/15/85 | 54.42 | 915.76 | | | | | 10/17/85 | 52.68 | 917.50 | 04/22/88 | 57.56 | 912.62 | | 10/23/85 | 55.66 | 914.52 | 06/23/88 | 69.42 | 900.76 | | 10/24/85 | 52.84 | 917.34 | 06/30/88 | 70.29 | 899.89 | | 11/01/85 | 53.07 | 917.11 | 07/27/88 | 67.63 | 902.55 | | 11/13/85 | 52.22 | 917.96 | 08/23/88 | 62.60 | 907.58 | | 12/09/85 | 53.67 | 916.51 | 09/30/88 | 62.42 | 907.76 | | 12/10/85 | 52.42 | 917.76 | 10/27/88 | 59.82 | 910.36 | | 12/11/85 | 52.42 | 917.76 | 11/30/88 | 57.81 | 912.37 | | 04/10/86 | 54.06 | 916.12 | 01/04/89 | 58.96 | 911.22 | | 05/15/86 | 52.93 | 917.25 | 02/16/89 | 58.09 | 912.09 | | 09/17/86 | 59.95 | 910.23 | 03/16/89 | 58.30 | 911.88 | | 09/30/86 | 56.40 | 913.78 | 04/19/89 | 59.73 | 910.45 | | 10/07/86 | 54.72 | 915.46 | 05/17/89 | 67.50 | 902.68 | | 10/08/86 | 54.42 | 915.76 | 06/21/89 | 64.32 | 905.86 | | 10/09/86 | 54.33 | 915.85 | 07/19/89 | 68.92 | 901.26 | | 10/10/86 | 53.83 | 916.35 | 08/15/89 | 70.77 | 899.41 | | 10/11/86 | 53.59 | 916.59 | 10/05/89 | 60.83 | 909.35 | | 10/15/86 | 53.87 | 916.31 | 10/25/89 | 59.74 | 910.44 | | 10/28/86 | 54.45 | 915.73 | 11/29/89 | 58.85 | 911.33 | | 11/04/86 | 75.18 | 895.00 | | | | | 12/01/86 | 78.05 | 892.13 | 01/03/90 | 58.91 | 911.27 | | 12/02/86 | 76.93 | 893.25 | 03/30/90 | 56.99 | 913.19 | | | | | 04/23/90 | 61.11 | 909.07 | | 01/07/87 | 80.24 | 889.94 | 05/21/90 | 60.63 | 909.55 | | 01/29/87 | 74.55 | 895.63 | 06/13/90 | 63.17 | 907.01 | | 03/03/87 | 82.02 | 888.16 | | | | | 1 | 3 | 3 | _ | n | A | 7 | _ | 2 | 0 | A | D | D | n | a | | |---|----|---|---|---|---|---|---|---|---|---|---|---|---|---|--| | | -3 | _ | - | u | 4 | - | _ | 4 | u | м | | u | ш | - | | | Wahpeton Shallow Sand Aquifer | | | | SI (ft.): | | | | |-------------------------------|------------|-----------|----------|------------|-----------|--|--| | | Depth to | WL Elev |
• | Depth to | WL Elev | | | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | | 09/10/85 | 33.35 | 936.77 | 12/01/86 | 41.95 | 928.17 | | | | 09/11/85 | 33.26 | 936.86 | 12/02/86 | 42.00 | 928.12 | | | | 09/12/85 | 33.18 | 936.94 | | | | | | | 09/18/85 | 33.11 | 937.01 | 01/07/87 | 45.71 | 924.41 | | | | 09/25/85 | 33.15 | 936.97 | 01/29/87 | 47.18 | 922.94 | | | | 10/03/85 | 32.99 | 937.13 | 03/03/87 | 49.65 | 920.47 | | | | 10/09/85 | 33.08 | 937.04 | 03/24/87 | 51.03 | 919.09 | | | | 10/15/85 | 33.22 | 936.90 | 03/25/87 | 51.03 | 919.09 | | | | 10/17/85 | 32.86 | 937.26 | 05/13/87 | 54.98 | 915.14 | | | | 10/23/85 | 33.07 | 937.05 | | | | | | | 10/24/85 | 33.30 | 936.82 | 04/21/88 | 54.54 | 915.58 | | | | 11/01/85 | 33.15 | 936.97 | 06/23/88 | 53.72 | 916.40 | | | | 11/13/85 | 33.21 | 936.91 | 06/30/88 | 53.71 | 916.41 | | | | 12/09/85 | 33.12 | 937.00 | 07/27/88 | 55.66 | 914.46 | | | | 12/10/85 | 33.27 | 936.85 | | | | | | | 12/11/85 | 33.13 | 936.99 | 05/17/89 | 47.45 | 922.67 | | | | | | | 06/21/89 | 45.84 | 924.28 | | | | 04/10/86 | 32.74 | 937.38 | 07/19/89 | 45.26 | 924.86 | | | | 05/15/86 | 32.30 | 937.82 | 08/15/89 | 44.59 | 925.53 | | | | 09/17/86 | 32.45 | 937.67 | 10/05/89 | 46.64 | 923.48 | | | | 09/30/86 | 32.29 | 937.83 | 10/25/89 | 47.70 | 922.42 | | | | 10/08/86 | 32.37 | 937.75 | 11/29/89 | 45.81 | 924.31 | | | | 10/09/86 | 33.07 | 937.05 | | | | | | | 10/10/86 | 33.09 | 937.03 | 01/03/90 | 44.72 | 925.40 | | | | 10/11/86 | 33.92 | 936.20 | 03/29/90 | 42.77 | 927.35 | | | | 10/15/86 | 35.33 | 934.79 | 04/23/90 | 42.26 | 927.86 | | | | 10/20/86 | 36.71 | 933.41 | 05/21/90 | 42.25 | 927.87 | | | | 10/28/86 | 35.98 | 934.14 | 06/13/90 | 42.07 | 928.05 | | | | 11/04/86 | 37.91 | 932.21 | × | | | | | LS Elev (msl,ft)=971.16 SI (ft.)=265-270 133-047-20ABDDAB | | Buried Valley | Aguifer | | SI (f | t.1 = 265 - 270 | |----------------------|---------------------|---------|----------------------|---------------------|-------------------| | Date | Depth to Water (ft) | | Date | Depth to Water (ft) | WL Elev (msl, ft) | | | 55.80 | | | 71.66 | 899.50 | | 09/30/86
10/08/86 | 55.51 | 915.65 | 06/30/88
07/27/88 | 68.65 | 902.51 | | 10/08/86 | 55.43 | 915.73 | 08/23/88 | 63.70 | 902.51 | | 100 | | | 4 4 | | | | 10/10/86 | 54.91 | 916.25 | 09/30/88 | 63.48 | 907.68 | | 10/11/86 | 54.57 | 916.59 | 10/27/88 | 60.92 | 910.24 | | 10/15/86 | 54.98 | 916.18 | 11/30/88 | 58.82 | 912.34 | | 10/28/86 | 55.52 | 915.64 | | | | | 11/04/86 | 76.82 | 894.34 | 01/04/89 | 60.03 | 911.13 | | 12/01/86 | 79.75 | 891.41 | 02/16/89 | 59.25 | 911.91 | | 12/02/86 | 78.60 | 892.56 | 03/16/89 | 59.36 | 911.80 | | | | | 04/19/89 | 60.79 | 910.37 | | 01/07/87 | 81.83 | 889.33 | 05/17/89 | 69.75 | 901.41 | | 01/29/87 | 75.85 | 895.31 | 06/21/89 | 65.48 | 905.68 | | 03/03/87 | 83.52 | 887.64 | 07/19/89 | 69.89 | 901.27 | | 03/24/87 | 84.30 | 886.86 | 08/15/89 | 72.22 | 898.94 | | 05/14/87 | 65.31 | 905.85 | 10/05/89 | 61.88 | 909.28 | | 07/03/87 | 67.24 | 903.92 | 10/25/89 | 60.79 | 910.37 | | 08/04/87 | 62.94 | 908.22 | 11/29/89 | 59.81 | 911.35 | | 08/31/87 | 65.88 | 905.28 | | | | | 11/03/87 | 59.61 | 911.55 | 01/03/90 | 59.96 | 911.20 | | 12/01/87 | 58.49 | 912.67 | 03/30/90 | 58.02 | 913.14 | | | | | 04/23/90 | 62.15 | 909.01 | | 04/22/88 | 58.65 | 912.51 | 05/21/90 | | 909.62 | | 06/23/88 | 70.97 | 900.19 | 06/14/90 | | 906.49 | | 00/23/00 | 10.91 | 300.19 | 00/14/90 | 04.07 | 500.49 | 133-047-20ABDDB1 LS Elev (msl, ft) = 971.06 | Wahpeton | Buried Valley | Aquifer | | TO TIEN (MSI | t.) = 260 - 265 | |----------|---------------|------------|----------|--------------|-----------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | | (1101, 10) | Date | water (It) | (msi, it) | | 09/04/85 | 55.75 | 915.31 | 01/29/87 | 75.55 | 895.51 | | 09/05/85 | 57.15 | 913.91 | 03/03/87 | 82.42 | 888.64 | | 09/06/85 | 57.99 | 913.07 | 03/25/87 | 79.37 | 891.69 | | 09/09/85 | 58.31 | 912.75 | 05/14/87 | 65.27 | 905.79 | | 09/10/85 | 55.63 | 915.43 | 07/03/87 | 66.50 | 904.56 | | 09/11/85 | 56.18 | 914.88 | 08/04/87 | 62.99 | 908.07 | | 09/12/85 | 55.33 | 915.73 | 09/01/87 | 63.35 | 907.71 | | 09/18/85 | 55.09 | 915.97 | 11/03/87 | 59.67 | 911.39 | | 09/25/85 | 56.02 | 915.04 | 12/01/87 | 58.51 | 912.55 | | 10/03/85 | 56.02 | 915.04 | | | | | 10/09/85 | 56.58 | 914.48 | 04/22/88 | 58.64 | 912.42 | | 10/15/85 | 55.65 | 915.41 | 06/23/88 | 70.21 | 900.85 | | 10/17/85 | 53.86 | 917.20 | 06/30/88 | 70.87 | 900.19 | | 10/23/85 | 56.69 | 914.37 | 07/27/88 | 68.54 | 902.52 | | 10/24/85 | 54.00 | 917.06 | 08/23/88 | 63.83 | 907.23 | | 11/01/85 | 54.19 | 916.87 | 09/30/88 | 63.41 | 907.65 | | 11/13/85 | 53.37 | 917.69 | 10/27/88 | 61.01 | 910.05 | | 12/10/85 | 53.36 | 917.70 | 11/30/88 | 58.96 | 912.10 | | 12/11/85 | 53.55 | 917.51 | | | | | | | | 01/04/89 | 60.07 | 910.99 | | 04/10/86 | 55.25 | 915.81 | 02/16/89 | 59.27 | 911.79 | | 05/15/86 | 53.97 | 917.09 | 03/16/89 | 59.48 | 911.58 | | 08/27/86 | 67.28 | 903.78 | 04/19/89 | 60.76 | 910.30 | | 09/17/86 | 61.03 | 910.03 | 05/17/89 | 69.11 | 901.95 | | 09/30/86 | 57.38 | 913.68 | 06/21/89 | 65.81 | 905.25 | | 10/08/86 | 55.44 | 915.62 | 07/19/89 | 70.00 | 901.06 | | 10/09/86 | 55.29 | 915.77 | 08/15/89 | 71.28 | 899.78 | | 10/10/86 | 54.84 | 916.22 | 10/05/89 | 61.96 | 909.10 | | 10/11/86 | 54.60 | 916.46 | 10/25/89 | 60.87 | 910.19 | | 10/15/86 | 54.91 | 916.15 | 11/29/89 | 59.86 | 911.20 | | 10/28/86 | 55.50 | 915.56 | | | | | 11/04/86 | 75.65 | 895.41 | 01/03/90 | 59.94 | 911.12 | | 12/01/86 | 78.72 | 892.34 | 03/30/90 | 58.00 | 913.06 | | 12/02/86 | 77.42 | 893.64 | 04/23/90 | 62.09 | 908.97 | | | | | 05/21/90 | 61.49 | 909.57 | | 01/07/87 | 80.62 | 890.44 | 06/14/90 | 63.86 | 907.20 | | | -20ABDDB2
Sand Plain Ac | uifer | | | LS Elev (msl
SI (f | , rc) =9/1.06
t.)=114-119 | |----------|----------------------------|----------------------|---|----------|------------------------|------------------------------| | Date | Depth to
Water (ft) | WL Elev
(msl, ft) | , | Date | Depth to
Water (ft) | WL Elev
(msl, ft) | | 09/04/85 | 55.62 | 915.44 | | 01/29/87 | 75.55 | 895.51 | | 09/05/85 | 57.03 | 914.03 | | 03/03/87 | 82.49 | 888.57 | | 09/06/85 | 57.81 | 913.25 | | 03/25/87 | 79.25 | 891.81 | | 09/09/85 | 57.14 | 913.92 | | 05/14/87 | 65.16 | 905.90 | | 09/10/85 | 55.47 | 915.59 | | 07/03/87 | 66.44 | 904.62 | | 09/11/85 | 56.00 | 915.06 | | 08/04/87 | 62.87 | 908.19 | | 09/12/85 | 55.18 | 915.88 | | 09/01/87 | 63.22 | 907.84 | | 09/18/85 | 54.94 | 916.12 | | 11/03/87 | 59.61 | 911.45 | | 09/25/85 | 55.85 | 915.21 | | 12/01/87 | 58.43 | 912.63 | | 10/03/85 | 55.84 | 915.22 | | | | | | 10/09/85 | 56.41 | 914.65 | | 04/22/88 | 58.54 | 912.52 | | 10/15/85 | 55.49 | 915.57 | | 06/23/88 | 70.13 | 900.93 | | 10/17/85 | 53.70 | 917.36 | | 06/30/88 | 70.80 | 900.26 | | 10/23/85 | 56.50 | 914.56 | | 07/27/88 | 68.42 | 902.64 | | 10/24/85 | 53.85 | 917.21 | | 08/23/88 | 63.74 | 907.32 | | 11/01/85 | 54.03 | 917.03 | | 09/30/88 | 63.30 | 907.76 | | 11/13/85 | 53.22 | 917.84 | | 10/27/88 | 60.91 | 910.15 | | 12/10/85 | 53.20 | 917.86 | | 11/30/88 | 58.85 | 912.21 | | 12/11/85 | 53.41 | 917.65 | | | | 7.0.01 | | | * | | | 01/04/89 | 59.99 | 911.07 | | 04/10/86 | 55.13 | 915.93 | | 02/16/89 | 59.19 | 911.87 | | 05/15/86 | 53.85 | 917.21 | | 03/16/89 | 59.41 | 911.65 | | 08/27/86 | 67.14 | 903.92 | | 04/19/89 | 60.64 | 910.42 | | 09/17/86 | 60.89 | 910.17 | | 05/17/89 | 69.12 | 901.94 | | 09/30/86 | 57.21 | 913.85 | | 06/21/89 | 65.65 | 905.41 | | 10/08/86 | 55.29 | 915.77 | | 07/19/89 | 69.88 | 901.18 | | 10/09/86 | 55.21 | 915.85 | | 08/15/89 | 71.18 | 899.88 | | 10/10/86 | 54.69 | 916.37 | | 10/05/89 | 61.86 | 909.20 | | 10/11/86 | 54.45 | 916.61 | | 10/25/89 | 60.77 | 910.29 | | 10/15/86 | 54.75 | 916.31 | | 11/29/89 | 59.73 | 911.33 | | 10/28/86 | 55.34 | 915.72 | | 11/23/03 | 33.73 | 711.33 | | 11/04/86 | 75.67 | 895.39 | | 01/03/90 | 59.84 | 911.22 | | 12/01/86 | 78.74 | 892.32 | | 03/30/90 | 57.92 | 913.14 | | 12/02/86 | 77.43 | 893.63 | | 04/23/90 | 61.97 | 909.09 | | 12,02,00 | 77.43 | 0,5.05 | | 05/21/90 | 61.28 | 909.78 | | 01/07/87 | 80.60 | 890.46 | | 06/14/90 | 63.81 | 907.25 | | 133-047- | -20ABDDB3 | | | | LS Elev (msl | .ft)=970.95 | | Wahpeton | Shallow Sand A | Aguifer | | | | (ft.) = 36 - 41 | | | Depth to | WL Elev | | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | | Date | Water (ft) | (msl, ft) | | 09/04/85 | 33.92 | 937.03 | | 12/10/85 | 34.11 | 936.84 | | 09/05/85 | 33.89 | 937.06 | | 12/11/85 | 33.98 | 936.97 | | 09/06/85 | 34.34 | 936.61 | | | | | | 09/09/85 | 34.04 | 936.91 | | 04/10/86 | 33.54 | 937.41 | | 09/10/85 | 34.17 | 936.78 | | 05/15/86 | 33.12 | 937.83 | | 09/11/85 | 34.12 | 936.83 | | 08/27/86 | 33.19 | 937.76 | | Date | Depth to
Water (ft) | WL Elev (msl, ft) | Date | Depth to
Water (ft) | WL Elev
(msl, ft) | |----------|------------------------|-------------------|----------|------------------------|----------------------| | 09/04/85 | 33.92 | 937.03 | 12/10/85 | 34.11 | 936.84 | | 09/05/85 | 33.89 | 937.06 | 12/11/85 | 33.98 | 936.97 | | 09/06/85 | 34.34 | 936.61 | | | | | 09/09/85 | 34.04 | 936.91 | 04/10/86 | 33.54 | 937.41 | | 09/10/85 | 34.17 | 936.78 | 05/15/86 | 33.12 | 937.83 | | 09/11/85 | 34.12 | 936.83 | 08/27/86 | 33.19 | 937.76 | | 09/12/85 | 34.01 | 936.94 | 09/17/86 | 33.31 | 937.64 | | 09/18/85 | 33.93 | 937.02 | 09/30/86 | 33.12 | 937.83 | | 09/25/85 | 34.00 | 936.95 | 10/08/86 | 33.19 | 937.76 | | 10/03/85 | 33.84 | 937.11 | 10/09/86 | 33.99 | 936.96 | | 10/09/85 | 33.94 | 937.01 | 10/10/86 | 34.24 | 936.71 | | 10/15/85 | 34.06 | 936.89 | 10/11/86 | 35.09 | 935.86 | | 10/17/85 | 33.79 | 937.16 | 10/15/86 | 36.77 | 934.18 | | 10/23/85 | 33.92 | 937.03 | 10/20/86 | 38.24 | 932.71 | | 10/24/85 | 34.13 | 936.82 | 10/28/86 | 36.83 | 934.12 | | 11/01/85 | 33.98 | 936.97 | 11/04/86 | 39.47 | 931.48 | | 11/13/85 | 34.04 | 936.91
| | | | | Undefined | Aquifer | | | SI (f | t.1=7.2-9.6 | |--|--|--|--|--|---| | 392.03 | Depth to | WL Elev | 2. 3. | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 09/04/85 | 6.09 | 964.38 | 09/25/85 | 6.08 | 964.39 | | 09/05/85 | 6.03 | 964.44 | 10/03/85 | 6.38 | 964.09 | | 09/09/85 | 5.49 | 964.98 | 10/09/85 | 6.73 | 963.74 | | 09/10/85 | 5.42 | 965.05 | 10/15/85 | 4.47 | 966.00 | | 09/11/85 | 5.22 | 965.25 | 10/24/85 | 4.78 | 965.69 | | 09/12/85 | 5.12 | 965.35 | 11/01/85 | 4.94 | 965.53 | | 09/18/85 | 5.58 | 964.89 | | | | | 133-047-2 | | | | LS Elev (ms | | | Wahpeton | Buried Vallev | Aquifer | | SI (f | t.)=238-244 | | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 11/18/69 | | | | | | | 11/10/03 | 11.67 | 956.73 | 06/09/70 | 11.53 | 956.87 | | 11/16/09 | 11.67 | 956.73 | 06/09/70
07/20/70 | 11.53
11.24 | 956.87
957.16 | | 11/18/09
133-047-2
Undefined | ROACC2 | 956.73 | MANUAL MANUAL MANUAL PROPERTY. | 11.24
LS Elev (msl, | 957.16
,ft)=970.94 | | 133-047-2 | 20ACC2
Aguifer | | MANUAL MANUAL MANUAL PROPERTY. | 11.24 LS Elev (msl | 957.16 | | 133-047-2 | ROACC2 | WL Elev
(msl, ft) | MANUAL MANUAL MANUAL PROPERTY. | 11.24
LS Elev (msl, | 957.16
,ft)=970.94
(ft.)=?-25 | | 133-047-2
Undefined | 20ACC2
Aguifer
Depth to | WL Elev | 07/20/70 | LS Elev (msl. SI | 957.16
,ft)=970.94
(ft.)=?-25
WL Elev | | 133-047-2
Undefined | Aguifer Depth to Water (ft) | WL Elev
(msl, ft) | 07/20/70 Date | LS Elev (msl
SI
Depth to
Water (ft) | 957.16
(ft)=970.94
(ft.)=?-25
WL Elev
(msl, ft) | | 133-047-2
Undefined
Date

06/17/76
06/30/76 | Acuifer Depth to Water (ft) | WL Elev
(msl, ft)
965.35 | Date
07/07/77 | LS Elev (msl, SI Depth to Water (ft) | 957.16
(ft)=970.94
(ft.)=?-25
WL Elev
(msl, ft)
964.51 | | 133-047-2
Undefined
Date
 | Acuifer Depth to Water (ft) 5.59 6.19 | WL Elev
(msl, ft)
965.35
964.75 | Date
07/07/77
08/10/77 | LS Elev (msl, SI Depth to Water (ft) 6.43 6.86 | 957.16
(ft)=970.94
(ft.)=?-2!
WL Elev
(msl, ft)
964.51
964.08 | | 133-047-2
Undefined
Date
06/17/76
06/30/76
07/21/76
08/11/76 | Acuifer Depth to Water (ft) 5.59 6.19 7.01 | WL Elev
(msl, ft)
965.35
964.75
963.93 | Date
07/07/77
08/10/77 | LS Elev (msl, SI Depth to Water (ft) 6.43 6.86 | 957.16
(ft)=970.94
(ft.)=?-2!
WL Elev
(msl, ft)
964.51
964.08 | | Date 06/17/76 06/30/76 07/21/76 08/11/76 | Depth to Water (ft) 5.59 6.19 7.01 7.59 | WL Elev
(msl, ft)
965.35
964.75
963.93
963.35 | Date

07/07/77
08/10/77
09/15/77 | 11.24 LS Elev (msl, SI Depth to Water (ft) 6.43 6.86 6.49 | 957.16
(ft)=970.94
(ft.)=?-2!
WL Elev
(msl, ft)
964.51
964.08
964.45 | | Date 06/17/76 06/30/76 07/21/76 08/11/76 08/24/76 | Depth to Water (ft) 5.59 6.19 7.01 7.59 17.21 | WL Elev
(msl, ft)

965.35
964.75
963.93
963.35
953.73 | Date

07/07/77
08/10/77
09/15/77 | 11.24 LS Elev (msl, SI Depth to Water (ft) 6.43 6.86 6.49 4.38 | 957.16
(ft)=970.94
(ft.)=?-2!
WL Elev
(msl, ft)
964.51
964.08
964.45
966.56 | | Date 06/17/76 06/30/76 07/21/76 08/11/76 08/24/76 09/13/76 | Depth to Water (ft) 5.59 6.19 7.01 7.59 17.21 18.05 | WL Elev
(msl, ft)

965.35
964.75
963.93
963.35
953.73 | Date
 | 11.24 LS Elev (msl, SI Depth to Water (ft) 6.43 6.86 6.49 4.38 5.35 | 957.16
(ft)=970.94
(ft.)=?-29
WL Elev
(msl, ft)
964.51
964.08
964.45
966.56
965.59 | | 133-047-2
Undefined
Date
 | Depth to Water (ft) 5.59 6.19 7.01 7.59 17.21 18.05 18.30 | WL Elev
(msl, ft)

965.35
964.75
963.93
963.35
953.73
952.89
952.64 | Date
 | 11.24 LS Elev (msl, SI Depth to Water (ft) 6.43 6.86 6.49 4.38 5.35 | 957.16
(ft)=970.94
(ft.)=?-29
WL Elev
(msl, ft)
964.51
964.08
964.45
966.56
965.59 | | Date 06/17/76 06/30/76 07/21/76 08/11/76 08/24/76 09/13/76 09/28/76 11/02/76 | Depth to Water (ft) 5.59 6.19 7.01 7.59 17.21 18.05 18.30 8.36 | WL Elev
(msl, ft)

965.35
964.75
963.93
963.35
953.73
952.89
952.64
962.58 | Date

07/07/77
08/10/77
09/15/77
06/22/78
09/21/78
12/06/78 | 11.24 LS Elev (msl. SI Depth to Water (ft) 6.43 6.86 6.49 4.38 5.35 6.48 | 957.16
(ft)=970.94
(ft.)=?-2!
WL Elev
(msl, ft)
964.51
964.08
964.45
966.56
965.59
964.46 | | Date | Depth to Water (ft) 5.59 6.19 7.01 7.59 17.21 18.05 18.30 8.36 8.16 | WL Elev
(msl, ft)
965.35
964.75
963.93
963.35
953.73
952.89
952.64
962.58
962.78 | Date

07/07/77
08/10/77
09/15/77
06/22/78
09/21/78
12/06/78 | 11.24 LS Elev (msl. SI Depth to Water (ft) 6.43 6.86 6.49 4.38 5.35 6.48 5.20 | 957.16
(ft)=970.94
(ft.)=2-25
WL Elev
(msl, ft)
964.51
964.08
964.45
966.56
965.59
964.46 | | 133-047-20ACC3 | | LS Elev (msl,ft)=968.97 | |-------------------|-------|-------------------------| | Undefined Aguifer | | SI (ft.)=23-26 | | Double to | M 131 | D | | Undefined | Aquifer | | | SI | (ft.)=23-26 | |-----------|------------|-----------|----------|------------|-------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 12/02/75 | 4.98 | 963.99 | 03/24/87 | 5.19 | 963.78 | | | | | 05/14/87 | 5.61 | 963.36 | | 06/03/76 | 5.08 | 963.89 | 07/03/87 | 6.71 | 962.26 | | 06/17/76 | 5.40 | 963.57 | 08/04/87 | 7.05 | 961.92 | | 06/30/76 | 6.00 | 962.97 | 09/01/87 | 7.37 | 961.60 | | 07/21/76 | 6.79 | 962.18 | 10/01/87 | 7.13 | 961.84 | | 08/11/76 | 7.42 | 961.55 | 10/12/87 | 7.28 | 961.69 | | 08/24/76 | 8.00 | 960.97 | 10/20/87 | 7.48 | 961.49 | | 09/13/76 | 8.42 | 960.55 | 11/03/87 | 7.34 | 961.63 | | 09/28/76 | 8.41 | 960.56 | 11/17/87 | 7.38 | 961.59 | | 11/02/76 | 8.17 | 960.80 | 12/01/87 | 7.36 | 961.61 | | 12/07/76 | 8.00 | 960.97 | | | | | | | | 02/11/88 | 8.02 | 960.95 | | 01/04/77 | 8.22 | 960.75 | 04/22/88 | 7.31 | 961.66 | | 04/04/77 | 4.91 | 964.06 | 06/23/88 | 6.78 | 962.19 | | 06/07/77 | 5.95 | 963.02 | 06/30/88 | 6.92 | 962.05 | | 07/07/77 | 6.72 | 962.25 | 07/27/88 | 7.21 | 961.76 | | 08/10/77 | 7.20 | 961.77 | 08/23/88 | 7.33 | 961.64 | | 09/15/77 | 6.90 | 962.07 | 09/30/88 | 6.56 | 962.41 | | | | | 10/27/88 | 7.05 | 961.92 | | 06/22/78 | 4.67 | 964.30 | 11/30/88 | 7.46 | 961.51 | | 09/21/78 | 5.50 | 963.47 | | | N . | | 12/06/78 | 6.75 | 962.22 | 01/05/89 | 7.79 | 961.18 | | 180 | | | 02/16/89 | 8.47 | 960.50 | | 09/17/80 | 4.86 | 964.11 | 03/16/89 | 8.68 | 960.29 | | | | | 04/19/89 | 7.18 | 961.79 | | 10/09/85 | 4.61 | 964.36 | 05/16/89 | 6.54 | 962.43 | | 10/24/85 | 4.28 | 964.69 | 06/21/89 | 5.90 | 963.07 | | 10/30/85 | 4.41 | 964.56 | 07/19/89 | 6.41 | 962.56 | | 11/13/85 | 4.77 | 964.20 | 08/15/89 | 6.56 | 962.41 | | 12/11/85 | 5.29 | 963.68 | 10/05/89 | 5.03 | 963.94 | | | | | 10/25/89 | 5.75 | 963.22 | | 04/10/86 | 2.59 | 966.38 | 11/29/89 | 6.16 | 962.81 | | 10/28/86 | 4.41 | 964.56 | | | | | 11/04/86 | 4.49 | 964.48 | 01/02/90 | 7.27 | 961.70 | | 12/01/86 | 4.36 | 964.61 | 03/29/90 | 7.45 | 961.52 | | | | | 04/24/90 | 6.48 | 962.49 | | 01/07/87 | 5.56 | 963.41 | 05/22/90 | 5.47 | 963.50 | | 01/28/87 | 6.06 | 962.91 | 06/14/90 | 5.85 | 963.12 | | 03/03/87 | 6.02 | 962.95 | | | | | | | | | | | 133-047-20ACD1 LS Elev (msl,ft)=969 Undefined Aguifer SI (ft.)=?-30 | underined | Adulier | | | SI | (IC.) = ? - 30 | |-----------|------------|-----------|----------|------------|----------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 06/17/76 | 15.86 | 953.14 | 06/07/77 | 22.20 | 946.80 | | 06/30/76 | 16.37 | 952.63 | 08/10/77 | 22.72 | 946.28 | | 07/21/76 | 16.89 | 952.11 | 09/15/77 | 22.62 | 946.38 | | 08/11/76 | 17.38 | 951.62 | | | | | 11/02/76 | 23.01 | 945.99 | 06/22/78 | 20.26 | 948.74 | | 12/07/76 | 20.53 | 948.47 | 09/21/78 | 21.80 | 947.20 | | | | | 12/06/78 | 22.60 | 946.40 | | 01/04/77 | 21.34 | 947.66 | | | | | 04/05/77 | 22.00 | 947.00 | 09/17/80 | 25.04 | 943.96 | | | | | | | | | 133-047-:
Undefined | Aguifer | | · | SI | msl,ft)=969
(ft.)=24-30 | |------------------------|---------------|-----------|----------|--------------|---| | | Depth to | WL Elev | | Depth to | | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | | | 09/07/75 | 14.01 | 954.99 | 06/07/76 | | 953.14 | | 12/02/75 | 15.47 | 953.53 | 06/17/76 | | 952.84 | | | | | 06/30/76 | 16.68 | 952.32 | | 06/03/76 | 15.90 | 953.10 | | 20.00 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 133-047-2 | ROADB | | | LS Elev (ms | 1,ft)=971.9 | | Wahpeton 1 | Buried Valley | Aguifer | | SI (f | t.)=254-260 | | | Depth to | WL Elev | | | WL Elev | | Date | Water (ft) | | Date | Water (ft) | | | | | | | | | | 11/18/69 | 14.62 | 957.28 | 06/09/71 | 7.41 | 964.49 | | | | | 07/20/71 | 14.12 | 957.78 | | | | | | | | | 133-047-2 | | | | LS Elev (msl | | | Wahpeton | Buried Valley | Aquifer | | SI (f | t.)=265-270 | | | Depth to | | | Depth to | WL Elev | | | Water (ft) | | Date | Water (ft) | | | 10/24/85 | 54.87 | 917.24 | 12/01/87 | 61.33 | 910.78 | | 10/30/85 | 55.79 | 916.32 | ,, | | | | 11/01/85 |
55.08 | 917.03 | 04/22/88 | 59.56 | 912.55 | | 11/13/85 | 54.12 | 917.99 | 06/23/88 | 71.39 | 900.72 | | 12/10/85 | 54.26 | 917.85 | 06/30/88 | 73.19 | 898.92 | | 12/11/85 | 54.25 | 917.86 | 07/27/88 | 70.57 | 901.54 | | | | | 08/23/88 | 64.39 | 907.72 | | 04/10/86 | 55.97 | 916.14 | 10/27/88 | 61.29 | 910.82 | | 08/27/86 | 68.70 | 903.41 | 11/30/88 | 59.92 | 912.19 | | 09/30/86 | 59.31 | 912.80 | | | | | 10/07/86 | 57.08 | 915.03 | 01/05/89 | 62.03 | 910.08 | | 10/08/86 | 56.94 | 915.17 | 02/16/89 | 60.48 | 911.63 | | 10/10/86 | 56.09 | 916.02 | 03/16/89 | 60.53 | 911.58 | | 10/11/86 | 56.03 | 916.08 | 04/19/89 | 61.55 | 910.56 | | 10/15/86 | 56.27 | 915.84 | 05/16/89 | 71.14 | 900.97 | | 10/28/86 | 58.12 | 913.99 | 06/21/89 | 67.82 | 904.29 | | 11/04/86 | 76.58 | 895.53 | 07/19/89 | 72.74 | 899.37 | | 12/01/86 | 78.52 | 893.59 | 08/15/89 | 72.37 | 899.74 | | 12/02/86 | 77.48 | 894.63 | 10/05/89 | 62.64 | 909.47 | | 12/02/00 | ,,,,, | 074.03 | 10/25/89 | 63.49 | 908.62 | | 01/07/87 | 79.29 | 892.82 | 12/01/89 | 60.26 | 911.85 | | 01/29/87 | 75.95 | 896.16 | 12101109 | 55.20 | 222.00 | | 03/03/87 | 81.89 | 890.22 | 01/03/90 | 61.48 | 910.63 | | 05/14/87 | 66.58 | 905.53 | 03/30/90 | 59.10 | 913.01 | | 07/03/87 | 66.61 | 905.50 | 04/24/90 | 61.12 | 910.99 | | 08/04/87 | 64.09 | 908.02 | 05/22/90 | 60.56 | 911.55 | | 09/01/87 | 65.49 | 906.62 | 06/14/90 | 65.67 | 906.44 | | 11/03/87 | 62.44 | 909.67 | 00/14/90 | 03.07 | 200.44 | | | V2.11 | 202.07 | | | | 133-047-20ADB3 LS Elev (msl,ft)=972.33 | Wahpeton | Sand Plain Act | ulfer | | SI (f | t.)=115-120 | |----------|---------------------|----------------------|----------|---------------------|---| | Date | Depth to Water (ft) | WL Elev
(msl, ft) | Date | Depth to Water (ft) | WL Elev (msl, ft) | | 10/24/85 | 55.07 | 917.26 | 12/01/87 | 61.53 | 910.80 | | 10/30/85 | 55.99 | 916.34 | | 32.55 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 11/01/85 | 55.29 | 917.04 | 04/22/88 | 59.79 | 912.54 | | 11/13/85 | 54.32 | 918.01 | 06/23/88 | 71.62 | 900.71 | | 12/10/85 | 54.47 | 917.86 | 06/30/88 | 73.43 | 898.90 | | 12/11/85 | 54.44 | 917.89 | 07/27/88 | 70.79 | 901.54 | | | | | 08/23/88 | 64.57 | 907.76 | | 04/10/86 | 56.19 | 916.14 | 10/27/88 | 61.50 | 910.83 | | 05/27/86 | 68.92 | 903.41 | 11/30/88 | 60.14 | 912.19 | | 09/30/86 | 59.57 | 912.76 | | | | | 10/07/86 | 57.32 | 915.01 | 01/05/89 | 62.21 | 910.12 | | 10/08/86 | 57.17 | 915.16 | 02/16/89 | 60.73 | 911.60 | | 10/10/86 | 56.33 | 916.00 | 03/16/89 | 60.76 | 911.57 | | 10/11/86 | 56.27 | 916.06 | 04/19/89 | 61.76 | 910.57 | | 10/15/86 | 56.52 | 915.81 | 05/16/89 | 72.61 | 899.72 | | 10/28/86 | 58.35 | 913.98 | 06/21/89 | 69.30 | 903.03 | | 11/04/86 | 76.86 | 895.47 | 07/19/89 | 72.98 | 899.35 | | 12/01/86 | 78.76 | 893.57 | 08/15/89 | 72.63 | 899.70 | | 12/02/86 | 77.73 | 894.60 | 10/05/89 | 62.86 | 909.47 | | | | | 10/25/89 | 63.74 | 908.59 | | 01/07/87 | 79.44 | 892.89 | 12/01/89 | 60.49 | 911.84 | | 01/29/87 | 76.20 | 896.13 | | | | | 03/03/87 | 82.15 | 890.18 | 01/03/90 | 61.70 | 910.63 | | 05/14/87 | 66.81 | 905.52 | 03/30/90 | 59.34 | 912.99 | | 07/03/87 | 66.82 | 905.51 | 04/24/90 | 61.37 | 910.96 | | 08/04/87 | 64.34 | 907.99 | 05/22/90 | 60.81 | 911.52 | | 09/01/87 | 65.72 | 906.61 | 06/14/90 | 65.94 | 906.39 | | 11/03/87 | 62.74 | 909.59 | | | | | | | | | | | 133-047-20ADD2 LS Elev (msl,ft)=968.67 | Wahpeton | Buried Valley | Aquifer | | SI (f | t.1 = 268 - 273 | |----------|---------------|-----------|----------|------------|-----------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 10/30/85 | 51.84 | 916.83 | 12/01/87 | 60.42 | 908.25 | | 11/01/85 | 51.61 | 917.06 | | | | | 11/13/85 | 50.40 | 918.27 | 02/11/88 | 57.95 | 910.72 | | 12/10/85 | 50.73 | 917.94 | 04/22/88 | 55.64 | 913.03 | | 12/11/85 | 50.45 | 918.22 | 07/27/88 | 70.50 | 898.17 | | | | | 08/22/88 | 63.12 | 905.55 | | 04/10/86 | 52.13 | 916.54 | 08/24/88 | 63.12 | 905.55 | | 08/27/86 | 67.26 | 901.41 | 09/30/88 | 64.85 | 903.82 | | 09/30/86 | 58.38 | 910.29 | 10/27/88 | 57.58 | 911.09 | | 10/07/86 | 54.44 | 914.23 | 11/30/88 | 56.20 | 912.47 | | 10/08/86 | 54.36 | 914.31 | | | | | 10/10/86 | 53.41 | 915.26 | 01/05/89 | 61.55 | 907.12 | | 10/11/86 | 53.35 | 915.32 | 02/16/89 | 56.71 | 911.96 | | 10/15/86 | 55.18 | 913.49 | 03/16/89 | 56.84 | 911.83 | | 10/28/86 | 57.22 | 911.45 | 04/19/89 | 58.23 | 910.44 | | 11/04/86 | 71.88 | 896.79 | 05/16/89 | 67.39 | 901.28 | | 12/01/86 | 77.10 | 891.57 | 06/21/89 | 68.05 | 900.62 | | 12/02/86 | 72.56 | 896.11 | 07/19/89 | 72.50 | 896.17 | | | | | 08/15/89 | 71.57 | 897.10 | | 01/07/87 | 74.28 | 894.39 | 10/05/89 | 58.84 | 909.83 | | 01/29/87 | 71.59 | 897.08 | 10/25/89 | 62.97 | 905.70 | | 03/03/87 | 77.21 | 891.46 | 11/29/89 | 61.97 | 906.70 | | 08/04/87 | 60.18 | 908.49 | | | | | 09/01/87 | 62.34 | 906.33 | 01/02/90 | 56.15 | 912.52 | | 10/01/87 | 62.16 | 906.51 | 03/30/90 | 55.90 | 912.77 | | 10/12/87 | 51.70 | 916.97 | 04/24/90 | 57.92 | 910.75 | | 10/20/87 | 57.29 | 911.38 | 05/22/90 | 57.14 | 911.53 | | 11/03/87 | 61.70 | 906.97 | 06/14/90 | 61.63 | 907.04 | | 11/17/87 | 62.50 | 906.17 | | | | | 133-047-
Wahpeton | Sand Plain Ac | uifer | W 10. SERVICE/SERVICE | LS Elev (msl
SI (f | ,ft)=968.8
t.)=122-12 | |----------------------|----------------|-----------|--|-----------------------|--------------------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft | | 10/30/85 | 51.95 | 916.88 | 11/17/87 | 61.65 | 907.18 | | 11/01/85 | 5171 | 917.12 | 12/01/87 | 59.54 | 909.29 | | 11/13/85 | 50.50 | 918.33 | | | | | 12/10/85 | 50.82 | 918.01 | 02/11/88 | 58.35 | 910.48 | | 12/11/85 | 50.56 | 918.27 | 04/22/88 | 55.90 | 912.93 | | | | | 06/23/88 | 68.37 | 900.46 | | 04/10/86 | 52.23 | 916.60 | 07/27/88 | 69.20 | 899.63 | | 08/27/86 | 66.41 | 902.42 | 08/24/88 | 61.69 | 907.14 | | 09/30/86 | 57.77 | 911.06 | 09/30/88 | 63.53 | 905.30 | | 10/07/86 | 54.43 | 914.40 | 10/27/88 | 57.43 | 911.40 | | 10/08/86 | 54.39 | 914.44 | 11/30/88 | 56.03 | 912.80 | | 10/10/86 | 53.46 | 915.37 | South State Control of the Control of Contro | | | | 10/11/86 | 53.38 | 915.45 | 01/05/89 | 60.21 | 908.62 | | 10/15/86 | 54.51 | 914.32 | 02/16/89 | 56.53 | 912.30 | | 10/28/86 | 56.58 | 912.25 | 03/16/89 | 56.63 | 912.20 | | 11/04/86 | 72.42 | 896.41 | 04/19/89 | 58.05 | 910.78 | | 12/01/86 | 77.58 | 891.25 | 05/16/89 | 67.19 | 901.64 | | 12/02/86 | 73.02 | 895.81 | 06/21/89 | 66.75 | 902.08 | | 22, 02, 00 | ,,,,,, | 0,5.01 | 07/19/89 | 71.18 | 897.65 | | 01/07/87 | 74.73 | 894.10 | 08/15/89 | 70.33 | 898.50 | | 01/29/87 | 72.03 | 896.80 | 10/05/89 | 58.65 | 910.18 | | 03/03/87 | 77.66 | 891.17 | 10/25/89 | 61.68 | 907.15 | | 05/03/07 | 63.36 | 905.47 | 11/29/89 | 60.22 | 908.61 | | 07/03/87 | 62.35 | 906.48 | 11/29/09 | 00.22 | 300.01 | | 08/04/87 | 60.39 | 908.44 | 01/02/00 | EE 06 | 010 07 | | 09/01/87 | 62.17 | 906.66 | 01/02/90 | 55.96 | 912.87 | | 10/01/87 | 62.23 | 906.60 | 03/30/90 | 55.66 | 913.17 | | 10/01/87 | 58.00 | 910.83 | 04/24/90 | 57.71
56.91 | 911.12 | | 10/12/87 | 57.58 | 911.25 | 05/22/90 | | 911.92 | | 11/03/87 | 60.80 | 908.03 | 06/14/90 | 61.43 | 907.40 | | 133-047-2 | 20BAA1 | | | LS Elev (msl, | ft)=965 8 | | | Shallow Sand A | Aguifer | | | (ft.)=23-2 | | | Depth to | WL Elev | | Depth to | WL Elev | | Date
 | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft | | 09/07/75 | 7.80 | 958.06 | 08/10/77 | 16.57 | 949.29 | | 12/02/75 | 9.97 | 955.89 | 09/15/77 | 16.80 | 949.06 | | | | | 12/12/77 | 16.70 | 949.16 | | 01/22/76 | 10.83 | 955.03 | | | | | 04/09/76 | 7.79 | 958.07 | 06/22/78 | 14.20 | 951.66 | | 06/03/76 | 9.00 | 956.86 | 09/00/78 | 14.20 | 951.66 | | 06/17/76 | 9.37 | 956.49 | 09/21/78 | 16.00 | 949.86 | | 06/30/76 | 10.00 | 955.86 | 12/06/78 | 17.44 | 948.42 | | 07/21/76 | 10.75 | 955.11 |
| | | | 08/11/76 | 11.53 | 954.33 | 06/18/80 | 20.89 | 944.97 | | 08/24/76 | 11.98 | 953.88 | 07/23/80 | 20.95 | 944.91 | | 09/13/76 | 12.74 | 953.12 | 09/10/80 | 21.18 | 944.68 | | 09/28/76 | 13.13 | 952.73 | 09/17/80 | 21.14 | 944.72 | | 11/02/76 | 14.10 | 951.76 | 11/18/80 | 21.72 | 944.72 | | 12/07/76 | 14.63 | 951.23 | | | 744.14 | | | | | 06/11/01 | 22 00 | 040 05 | 01/04/77 04/04/77 07/07/77 13.55 13.22 15.95 952.31 952.64 949.91 06/11/81 09/03/81 10/08/81 12/01/81 22.99 22.71 23.85 23.05 942.87 943.15 942.01 942.81 | | - | | | | | | |--|---|--|--|--|--|--| | | | | | | | | | | | | | | | | | Wahpeton S | Sand Plain Acı | uifer | | SI (fi | (10) = 903.20
(10) = 128 - 134 | |----------------------|----------------|-----------|----------------------|----------------|-----------------------------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 09/07/75 | 23.16 | 942.10 | 10/15/85 | 49.49 | 915.77 | | 12/02/75 | 40.35 | 924.91 | 10/23/85 | 49.31 | 915.95 | | | | | 10/24/85 | 47.97 | 917.29 | | 04/09/76 | 14.48 | 950.78 | 11/01/85 | 48.14 | 917.12 | | 06/03/76 | 27.27 | 937.99 | 12/04/85 | 47.67 | 917.59 | | 06/17/76 | 26.41 | 938.85 | | | | | 06/30/76 | 26.80 | 938.46 | 04/12/86 | 50.17 | 915.09 | | 07/21/76 | 31.78 | 933.48 | 05/23/86 | 47.79 | 917.47 | | 08/11/76 | 45.12 | 920.14 | 07/16/86 | 47.93 | 917.33 | | 08/24/76 | 45.49 | 919.77 | 09/04/86 | 62.67 | 902.59 | | 09/13/76 | 41.47 | 923.79 | 10/28/86 | 49.28 | 915.98 | | 09/28/76 | 40.41 | 924.85 | 11/04/86 | 65.27 | 899.99 | | 11/02/76 | 34.25 | 931.01 | 11/25/86 | 69.03 | 896.23 | | 12/07/76 | 39.06 | 926.20 | 12/01/86 | 70.81 | 894.45 | | | | | 12/02/86 | 69.10 | 896.16 | | 01/04/77 | 39.23 | 926.03 | | | | | 04/04/77 | 32.98 | 932.28 | 01/07/87 | 70.80 | 894.46 | | 07/07/77 | 31.08 | 934.18 | 01/29/87 | 68.34 | 896.92 | | 08/10/77 | 31.78 | 933.48 | 03/03/87 | 73.00 | 892.26 | | 09/13/77 | 31.77 | 933.49 | 03/24/87 | 75.17 | 890.09 | | 09/15/77 | 31.77 | 933.49 | 05/14/87 | 59.36 | 905.90 | | 06/00/70 | 22.24 | 022 02 | 07/03/87 | 60.14 | 905.12 | | 06/22/78 | 32.34 | 932.92 | 07/10/87 | 60.75 | 904.51
908.00 | | 09/21/78 | 30.97 | 934.29 | 08/04/87 | 57.26 | | | 00 (00 (70 | 42.00 | 000 00 | 08/31/87 | 57.84 | 907.42 | | 09/20/79 | 42.90 | 922.36 | 09/17/87 | 55.53 | 909.73 | | 11/30/79 | 36.97 | 928.29 | 10/02/87 | 56.02
54.42 | 909.24
910.84 | | 02/20/00 | 35.50 | 929.76 | 11/02/87
11/25/87 | 53.29 | 910.84 | | 03/20/80
06/18/80 | 41.01 | 924.25 | 11/30/87 | 53.29 | 911.42 | | 09/10/80 | 41.01 | 923.33 | 11/30/6/ | 33.64 | 911.42 | | 09/10/80 | 44.80 | 920.46 | 02/11/88 | 53.61 | 911.65 | | 11/18/80 | 41.37 | 923.89 | 04/22/88 | 53.02 | 912.24 | | 11/10/00 | 41.3/ | 923.09 | 06/23/88 | 62.24 | 903.02 | | 06/11/81 | 41.21 | 924.05 | 06/30/88 | 61.66 | 903.60 | | 09/03/81 | 62.32 | 902.94 | 07/27/88 | 60.52 | 904.74 | | 10/08/81 | 44.78 | 920.48 | 08/23/88 | 58.24 | 907.02 | | 12/01/81 | 42.91 | 922.35 | 09/30/88 | 55.57 | 909.69 | | ,, | | | 10/27/88 | 55.89 | 909.37 | | 07/07/82 | 46.64 | 918.62 | 11/30/88 | 55.10 | 910.16 | | 10/04/82 | 62.20 | 903.06 | | | | | 11/30/82 | 44.43 | 920.83 | 01/04/89 | 54.17 | 911.09 | | | | | 02/15/89 | 53.75 | 911.51 | | 03/10/83 | 46.00 | 919.26 | 03/16/89 | 53.51 | 911.75 | | 06/15/83 | 47.26 | 918.00 | 04/19/89 | 53.14 | 912.12 | | 08/24/83 | 48.65 | 916.61 | 05/17/89 | 62.92 | 902.34 | | 11/29/83 | 45.58 | 919.68 | 06/21/89 | 59.42 | 905.84 | | | | 101 | 07/19/89 | 63.30 | 901.96 | | 04/04/84 | 48.06 | 917.20 | 08/15/89 | 62.47 | 902.79 | | 06/14/84 | 48.07 | 917.19 | 10/05/89 | 57.13 | 908.13 | | 08/30/84 | 53.11 | 912.15 | 10/25/89 | 54.13 | 911.13 | | 11/29/84 | 47.83 | 917.43 | 12/01/89 | 52.56 | 912.70 | | 02/28/85 | 52.64 | 912.62 | 01/03/90 | 52.71 | 912.55 | | 06/26/85 | 47.96 | 917.30 | 03/30/90 | 52.28 | 912.98 | | 09/11/85 | 50.07 | 915.19 | 04/23/90 | 55.05 | 910.21 | | 09/25/85 | 49.26 | 916.00 | 05/21/90 | 54.43 | 910.83 | | 10/03/85 | 48.92 | 916.34 | 06/13/90 | 59.55 | 905.71 | | 10/09/85 | 49.24 | 916.02 | | | | 133-047-20BAA3 LS Elev (msl,ft)=964.95 | Wahpeton | Shallow Sand I | Aguifer | | | SI (ft. |)=33.5-36.5 | |----------|----------------|-----------|----|----------|------------|-------------| | | Depth to | WL Elev | | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | | Date | Water (ft) | (msl, ft) | | 10/09/85 | 27.44 | 937.51 | | 10/20/87 | 35.41 | 929.54 | | 10/23/85 | 27.38 | 937.57 | | 11/02/87 | 35.42 | 929.53 | | 10/24/85 | 27.44 | 937.51 | | 11/17/87 | 35.49 | 929.46 | | 11/01/85 | 27.37 | 937.58 | | 11/30/87 | 36.24 | 928.71 | | 11/13/85 | 27.41 | 937.54 | | | | | | 12/11/85 | 27.41 | 937.54 | | 02/11/88 | 35.62 | 929.33 | | | | | | 04/22/88 | 35.48 | 929.47 | | 04/10/86 | 26.79 | 938.16 | | 06/23/88 | 35.70 | 929.25 | | 09/30/86 | 26.12 | 938.83 | | 06/30/88 | 35.70 | 929.25 | | 10/08/86 | 26.11 | 938.84 | | 07/27/88 | 35.73 | 929.22 | | 10/09/86 | 26.13 | 938.82 | | 08/23/88 | 35.51 | 929.44 | | 10/10/86 | 26.05 | 938.90 | | 09/30/88 | 35.49 | 929.46 | | 10/11/86 | 26.11 | 938.84 | | 10/27/88 | 35.53 | 929.42 | | 10/15/86 | 26.23 | 938.72 | | | | | | 10/20/86 | 26.45 | 938.50 | | 04/19/89 | 34.80 | 930.15 | | 10/28/86 | 26.75 | 938.20 | | 05/17/89 | 34.41 | 930.54 | | 11/04/86 | 27.01 | 937.94 | | 06/21/89 | 34.53 | 930.42 | | 12/01/86 | 28.36 | 936.59 | | 07/19/89 | 34.51 | 930.44 | | 12/02/86 | 28.38 | 936.57 | | 08/15/89 | 34.66 | 930.29 | | | | | | 10/05/89 | 34.96 | 929.99 | | 01/07/87 | 30.51 | 934.44 | | 10/25/89 | 35.18 | 929.77 | | 01/29/87 | 31.72 | 933.23 | | 12/01/89 | 35.37 | 929.58 | | 03/03/87 | 33.41 | 931.54 | | d2 | | | | 05/13/87 | 34.76 | 930.19 | | 01/03/90 | 35.55 | 929.40 | | 07/03/87 | 35.04 | 929.91 | | 03/29/90 | 35.69 | 929.26 | | 08/04/87 | 35.26 | 929.69 | | 04/23/90 | 35.66 | 929.29 | | 08/31/87 | 3600 | 928.95 | | 05/21/90 | 35.66 | 929.29 | | 10/02/87 | 35.41 | 929.54 | ** | 06/13/90 | 35.63 | 929.32 | | 10/12/87 | 35 46 | 929.49 | | | | | | Wahpeton 1 | | | | 1 1 1 1 | t.)=258-26 | |--|---|---|--
--|---| | Date | Depth to
Water (ft) | WL Elev (msl, ft) | Date | Depth to Water (ft) | WL Elev
(msl, ft | | | udser (IC) | (MOI) IU/ | Date | water (IL) | (MBI, [[| | 10/23/85 | 49.33 | 916.00 | 11/17/87 | 54.40 | 910.93 | | 10/24/85 | 47.99 | 917.34 | 11/30/87 | 54.14 | 911.19 | | 11/01/85 | 48.16 | 917.17 | | | | | 11/13/85 | 47.88 | 917.45 | 02/11/88 | 52.97 | 912.36 | | 12/10/85 | 47.41 | 917.92 | 04/22/88 | 53.05 | 912.28 | | 12/11/85 | 48.05 | 917.28 | 06/23/88 | 62.12 | 903.21 | | | | | 06/30/88 | 62.34 | 902.99 | | 04/10/86 | 50.32 | 915.01 | 07/27/88 | 60.30 | 905.03 | | 09/30/86 | 49.83 | 915.50 | 08/23/88 | 58.80 | 906.53 | | 10/08/86 | 48.74 | 916.59 | 09/30/88 | 55.63 | 909.70 | | 10/10/86 | 48.06 | 917.27 | 10/27/88 | 56.32 | 909.01 | | 10/11/86 | 47.97 | 917.36 | 11/30/88 | 53.72 | 911.61 | | 10/15/86 | 48.08 | 917.25 | | | | | 10/28/86 | 49.51 | 915.82 | 01/04/89 | 55.38 | 909.95 | | 11/04/86 | 65.55 | 899.78 | 04/19/89 | 53.42 | 911.91 | | 12/01/86 | 71.24 | 894.09 | 05/17/89 | 62.28 | 903.05 | | 12/02/86 | 68.96 | 896.37 | 06/21/89 | 58.99 | 906.34 | | | | | 07/19/89 | 63.03 | 902.30 | | 01/07/87 | 71.06 | 894.27 | 08/15/89 | 62.46 | 902.87 | | 01/29/87 | 68.07 | 897.26 | 10/05/89 | 57.57 | 907.76 | | 03/03/87 | 73.32 | 892.01 | 10/25/89 | 54.05 | 911.28 | | 03/24/87 | 75.87 | 889.46 | 12/01/89 | 52.89 | 912.44 | | 05/14/87 | 58.82 | 906.51 | | | | | 07/03/87 | 61.37 | 903.96 | 01/03/90 | 53.10 | 912.23 | | 30/01/07 | 57.16 | 908.17 | 03/30/90 | 52.16 | 913.17 | | | | | | | | | 08/31/87 | 58.02 | 907.31 | 04/23/90 | 55.20 | | | 08/31/87
10/02/87 | 58.02
55.97 | 907.31
909.36 | 05/21/90 | 55.20
54.51 | 910.82 | | 08/31/87
10/02/87
11/02/87 | 58.02
55.97
55.61 | 907.31 | 100 to 10 | 55.20
54.51
59.70 | 910.13
910.82
905.63 | | 08/31/87
10/02/87
11/02/87
133-047- | 58.02
55.97
55.61 | 907.31
909.36
909.72 | 05/21/90 | 55.20
54.51
59.70
LS Elev (msl. | 910.82
905.63
,ft)=974.8 | | 08/31/87
10/02/87
11/02/87 | 58.02
55.97
55.61 | 907.31
909.36
909.72 | 05/21/90 | 55.20
54.51
59.70
LS Elev (msl. | 910.82
905.63
,ft)=974.8
t.)=61.7-6 | | 08/31/87
10/02/87
11/02/87
133-047-2
Wahpeton S | 58.02
55.97
55.61
20BAACD
Shallow Sand A | 907.31
909.36
909.72
Aguifer | 05/21/90 | 55.20
54.51
59.70
LS Elev (msl
SI (fi | 910.82
905.63
,ft)=974.8
t.)=61.7-6
WL Elev | | 08/31/87
10/02/87
11/02/87
133-047-2
Wahpeton S | 58.02
55.97
55.61
20BAACD
Shallow Sand A
Depth to
Water (ft) | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft) | 05/21/90
06/13/90 | 55.20
54.51
59.70
LS Elev (msl
SI (ft | 910.82
905.63
,ft)=974.8
t.)=61.7-6
WL Elev | | 08/31/87
10/02/87
11/02/87
133-047-2
Wahpeton S | 58.02
55.97
55.61
20BAACD
Shallow Sand A
Depth to
Water (ft) | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)
907.12 | 05/21/90
06/13/90
Date | 55.20
54.51
59.70
LS Elev (msl
SI (fi
Depth to
Water (ft) | 910.82
905.63
,ft)=974.8
t.)=61.7-6
WL Elev
(msl, ft | | 08/31/87
10/02/87
11/02/87
133-047-2
Wahpeton S
Date
06/21/89
07/19/89 | 58.02
55.97
55.61
20BAACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)

907.12
908.34 | 05/21/90
06/13/90
Date
0 | 55.20
54.51
59.70
LS Elev (msl
SI (fi
Depth to
Water (ft) | 910.82
905.63
,ft)=974.8
t.)=61.7-6
WL Elev
(msl, ft | | 08/31/87
10/02/87
11/02/87
133-047-2
Wahpeton S
Date
06/21/89
07/19/89
08/15/89 | 58.02
55.97
55.61
20BAACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)

907.12
908.34
908.45 | 05/21/90
06/13/90
Date

01/03/90
03/29/90 | 55.20
54.51
59.70
LS Elev (msl
SI (fi
Depth to
Water (ft)
 | 910.82
905.63
,ft)=974.8
t.)=61.7-6
WL Elev
(msl, ft | | 08/31/87
10/02/87
11/02/87
133-047-2
Wahpeton S
Date
06/21/89
07/19/89
08/15/89
10/05/89 | 58.02
55.97
55.61
20BAACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)

907.12
908.34
908.45
927.37 | 05/21/90
06/13/90
Date

01/03/90
03/29/90
04/24/90 | 55.20
54.51
59.70
LS Elev (msl
SI (fi
Depth to
Water (ft)
47.73
47.05
46.96 | 910.82
905.63
,ft)=974.8
t.)=61.7-6
WL Elev
(msl, ft)
927.09
927.77
927.86 | | 08/31/87
10/02/87
11/02/87
133-047-2
Wahpeton S
Date
06/21/89
07/19/89
08/15/89
10/05/89 | 58.02
55.97
55.61
20BAACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)

907.12
908.34
908.45
927.37
927.09 | 05/21/90
06/13/90
Date

01/03/90
03/29/90
04/24/90
05/22/90 | 55.20
54.51
59.70
LS Elev (msl.
SI (find the series) of the series o | 910.82
905.63
,ft)=974.8
t.)=61.7-6
WL Elev
(ms1, ft)
927.09
927.77
927.86
928.06 | | 08/31/87
10/02/87
11/02/87
133-047-2
Wahpeton S
Date
 | 58.02
55.97
55.61
20BACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73
47.98 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)

907.12
908.34
908.45
927.37 | 05/21/90
06/13/90
Date

01/03/90
03/29/90
04/24/90 | 55.20
54.51
59.70
LS Elev (msl.
SI (fi
Depth to
Water (ft)
 | 910.82
905.63
,ft)=974.8
t.)=61.7-6
WL Elev
(msl, ft)
927.09
927.77
927.86
928.06
928.03 | | 08/31/87
10/02/87
11/02/87
133-047-2
Wahpeton S
Date
 | 58.02
55.97
55.61
20BAACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)

907.12
908.34
908.45
927.37
927.09
926.84 | 05/21/90
06/13/90
Date

01/03/90
03/29/90
04/24/90
05/22/90 | 55.20
54.51
59.70
LS Elev (msl.
SI (fit)
Depth to
Water (ft)
 | 910.82
905.63
,ft)=974.8
t.)=61.7-6
WL Elev
(msl, ft)
927.09
927.77
927.86
928.03 | | 08/31/87
10/02/87
11/02/87
133-047-2
Nahpeton S
Oate
 | 58.02
55.97
55.61
20BAACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73
47.98 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)

907.12
908.34
908.45
927.37
927.09
926.84 | 05/21/90
06/13/90
Date

01/03/90
03/29/90
04/24/90
05/22/90 | 55.20
54.51
59.70
LS Elev (msl.
SI (fit)
Depth to
Water (ft)
 | 910.82
905.63
,ft)=974.8
t.)=61.7-6
WL Elev
(msl, ft
927.09
927.77
927.86
928.03
,ft)=966.0 | | 08/31/87
10/02/87
11/02/87
133-047-2
Wahpeton S
Date
06/21/89
07/19/89
08/15/89
10/05/89
10/25/89
11/29/89
133-047- | 58.02
55.97
55.61
20BAACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73
47.98
20BABAB1
Sand Plain Acu |
907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)
 | 05/21/90
06/13/90
Date

01/03/90
03/29/90
04/24/90
05/22/90 | 55.20
54.51
59.70
LS Elev (msl.
SI (find the second of | 910.82
905.63
,ft)=974.8
t.)=61.7-6
WL Elev
(ms1, ft)
927.09
927.77
927.86
928.03
,ft)=966.0
t.)=112-11 | | 08/31/87
10/02/87
11/02/87
133-047-2
Wahpeton S
Date
06/21/89
07/19/89
08/15/89
10/05/89
11/29/89
11/29/89 | 58.02
55.97
55.61
20BACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73
47.98
20BABAB1
Sand Plain Act | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)
907.12
908.34
908.45
927.37
927.09
926.84
Difer
WL Elev
(msl, ft) | 05/21/90
06/13/90
Date

01/03/90
03/29/90
04/24/90
05/22/90
06/14/90 | 55.20 54.51 59.70 LS Elev (msl. SI (fi Depth to Water (ft) 47.73 47.05 46.96 46.76 46.79 LS Elev (msl. SI (fi Depth to Water (ft) | 910.82
905.63
,ft)=974.8
t.)=61.7-6
WL Elev
(msl, ft)
927.09
927.77
927.86
928.06
928.06
,ft)=966.0
t.)=112-11
WL Elev
(msl, ft | | 08/31/87
10/02/87
11/02/87
133-047-2
Wahpeton S
Date
06/21/89
07/19/89
08/15/89
10/05/89
11/29/89
11/29/89 | 58.02
55.97
55.61
20BACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73
47.98
20BABAB1
Sand Plain Agn
Depth to
Water (ft)
58.17 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)
907.12
908.34
908.45
927.37
927.09
926.84
ML Elev
(msl, ft)
907.90 | Date

01/03/90
03/29/90
04/24/90
05/22/90
06/14/90
Date
 | 55.20 54.51 59.70 LS Elev (msl. SI (fi Depth to Water (ft) 47.73 47.05 46.96 46.76 46.79 LS Elev (msl. SI (fi Depth to Water (ft) | 910.82
905.63
,ft)=974.8
t.)=61.7-6
WL Elev
(msl, ft)
927.09
927.77
927.86
928.06
928.03
,ft)=966.0
t.)=112-11
WL Elev
(msl, ft) | | 08/31/87
10/02/87
11/02/87
133-047-2
Nahpeton S
Oate
06/21/89
07/19/89
08/15/89
10/05/89
10/25/89
11/29/89
133-047-
Wahpeton S
Oate | 58.02
55.97
55.61
20BAACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73
47.98
20BABAB1
Sand Plain Agn
Depth to
Water (ft)
58.17
57.47 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)
907.12
908.34
908.45
927.37
927.09
926.84
Difer
WL Elev
(msl, ft)
907.90
908.60 | Date 01/03/90 03/29/90 04/24/90 05/22/90 06/14/90 Date 03/16/89 04/19/89 | 55.20 54.51 59.70 LS Elev (msl. SI (fi Depth to Water (ft) 47.73 47.05 46.96 46.76 46.79 LS Elev (msl. SI (fi Depth to Water (ft) | 910.82
905.63
,ft)=974.8
t.)=61.7-6
WL Elev
(msl, ft)
927.09
927.77
927.86
928.06
928.03
,ft)=966.0
t.)=112-13
WL Elev
(msl, ft)
910.60
912.00 | | 08/31/87
10/02/87
11/02/87
133-047-2
Nahpeton S
Oate
06/21/89
07/19/89
08/15/89
10/05/89
10/25/89
11/29/89
133-047-
Wahpeton S
Oate | 58.02
55.97
55.61
20BAACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73
47.98
20BABAB1
Sand Plain Act
Depth to
Water (ft)
58.17
57.47
56.59 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)
907.12
908.34
908.45
927.37
927.09
926.84
Difer
WL Elev
(msl, ft)
907.90
908.60
909.48 | Date 01/03/90 03/29/90 04/24/90 05/22/90 06/14/90 Date 03/16/89 04/19/89 05/17/89 | 55.20 54.51 59.70 LS Elev (msl. SI (ft) Depth to Water (ft) 47.73 47.05 46.96 46.76 46.79 LS Elev (msl. SI (ft) Depth to Water (ft) | 910.82
905.63
,ft)=974.8
t.)=61.7-6
WL Elev
(msl, ft)
927.09
927.77
927.86
928.06
928.03
,ft)=966.0
t.)=112-13
WL Elev
(msl, ft)
910.60
912.00
903.19 | | 08/31/87
10/02/87
11/02/87
133-047-2
Nahpeton S
Oate
06/21/89
07/19/89
08/15/89
10/05/89
10/25/89
11/29/89
133-047-
Wahpeton S
Oate | 58.02
55.97
55.61
20BAACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73
47.98
20BABAB1
Sand Plain Agn
Depth to
Water (ft)
58.17
57.47 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)
907.12
908.34
908.45
927.37
927.09
926.84
Difer
WL Elev
(msl, ft)
907.90
908.60 | Date 01/03/90 03/29/90 04/24/90 05/22/90 06/14/90 Date 03/16/89 04/19/89 05/17/89 06/21/89 | 55.20 54.51 59.70 LS Elev (msl. SI (ft) Depth to Water (ft) 47.73 47.05 46.96 46.76 46.79 LS Elev (msl. SI (ft) Depth to Water (ft) | 910.82
905.63
,ft)=974.6
t.)=61.7-6
WL Elev
(msl, ft)
927.09
927.77
927.86
928.00
,ft)=966.0
t.)=112-13
WL Elev
(msl, ft)
910.60
903.19
906.09 | | 08/31/87
10/02/87
11/02/87
133-047-2
Nahpeton S
Oate
06/21/89
07/19/89
08/15/89
10/05/89
10/25/89
11/29/89
133-047-
Wahpeton S
Oate
08/31/87
10/02/87
11/02/87 | 58.02
55.97
55.61
20BACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73
47.98
20BABAB1
Sand Plain Aon
Depth to
Water (ft)
58.17
57.47
56.59
55.19 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)
907.12
908.34
908.45
927.37
927.09
926.84
Difer
WL Elev
(msl, ft)
907.90
908.60
909.48
910.88 | Date 01/03/90 03/29/90 04/24/90 05/22/90 06/14/90 Date 03/16/89 04/19/89 05/17/89 06/21/89 07/19/89 | 55.20 54.51 59.70 LS Elev (msl. SI (ft) Depth to Water (ft) 47.73 47.05 46.96 46.76 46.79 LS Elev (msl. SI (ft) Depth to Water (ft) | 910.82
905.63
,ft)=974.8
t.)=61.7-6
WL Elev
(msl, ft)
927.09
927.77
927.86
928.00
,ft)=966.0
t.)=112-13
WL Elev
(msl, ft)
910.60
903.19
906.09
902.30 | | 08/31/87
10/02/87
11/02/87
133-047-2
Nahpeton S
Oate
06/21/89
07/19/89
08/15/89
10/05/89
10/25/89
11/29/89
133-047-
Wahpeton S
Oate
08/31/87
10/02/87
11/30/87 | 58.02
55.97
55.61
20BACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73
47.98
20BABAB1
Sand Plain Aon
Depth to
Water (ft)
58.17
57.47
56.59
55.19 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)
907.12
908.34
908.45
927.37
927.09
926.84
Difer
WL Elev
(msl, ft)
907.90
908.60
909.48 | Date 01/03/90 03/29/90 04/24/90 05/22/90 06/14/90 Date 03/16/89 04/19/89 05/17/89 06/21/89 07/19/89 08/15/89 | 55.20
54.51
59.70
LS Elev (msl.
SI (ft)
Depth to
Water (ft)
47.73
47.05
46.96
46.76
46.79
LS Elev (msl.
SI (ft)
Depth to
Water (ft)
 | 910.82
905.63
,ft)=974.6
t.)=61.7-6
WL Elev
(msl, ft)
927.09
927.77
927.86
928.03
,ft)=966.0
(t.)=112-13
WL Elev
(msl, ft)
910.60
903.19
906.09
903.56 | | 08/31/87
10/02/87
11/02/87
11/02/87
133-047-2
Nahpeton S
06/21/89
07/19/89
10/05/89
10/05/89
10/25/89
11/29/89
11/29/89
11/29/89
11/29/89
08/31/87
10/02/87
11/02/87
11/30/87 | 58.02
55.97
55.61
20BACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73
47.98
20BABAB1
Sand Plain Aon
Depth to
Water (ft)
58.17
57.47
56.59
55.19 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)
907.12
908.34
908.45
927.37
927.09
926.84
Difer
WL Elev
(msl, ft)
907.90
908.60
909.48
910.88
912.18
903.97 | Date 01/03/90 03/29/90 04/24/90 05/22/90 06/14/90 Date 03/16/89 04/19/89 05/17/89 06/21/89 07/19/89 08/15/89 10/05/89 | 55.20 54.51 59.70 LS Elev (msl. SI (ft) Depth to Water (ft) 47.73 47.05 46.96 46.76 46.79 LS Elev (msl. SI (ft) Depth to Water (ft) | 910.8;
905.6;
,ft)=974.1;
t.)=61.7-(
WL Elem
(msl, ft)
927.0;
927.7;
927.8;
928.0;
,ft)=966.0;
(msl, ft)
910.6;
912.0;
903.1;
906.0;
903.5;
906.8; | | 08/31/87
10/02/87
11/02/87
11/02/87
133-047-2
Nahpeton S
06/21/89
07/19/89
10/05/89
10/05/89
10/25/89
11/29/89
133-047-
Nahpeton S
08/31/87
10/02/87
11/02/87
11/30/87 | 58.02
55.97
55.61
20BACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73
47.98
20BABAB1
Sand Plain Accompleted to
Water (ft)
58.17
57.47
56.59
55.19
53.89
62.10 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)
907.12
908.34
908.45
927.37
927.09
926.84
Difer
WL Elev
(msl, ft)
907.90
908.60
909.48
910.88 | Date 01/03/90 03/29/90 04/24/90 05/22/90 06/14/90 Date 03/16/89 04/19/89 05/17/89 06/21/89 07/19/89 08/15/89 10/05/89 | 55.20 54.51 59.70 LS Elev (msl. SI (ft) Depth to Water (ft) 47.73 47.05 46.96 46.76 46.79 LS Elev (msl. SI (ft) Depth to Water (ft) | 910.8;
905.6;
,ft)=974.1;
t.)=61.7-(
WL Elem
(msl, ft)
927.0;
927.7;
928.0;
928.0;
,ft)=966.0;
(msl, ft)
910.6;
912.0;
903.1;
906.0;
903.5;
906.8;
911.1; | | 08/31/87
10/02/87
11/02/87
133-047-2
Nahpeton S
06/21/89
07/19/89
08/15/89
10/05/89
10/25/89
11/29/89
133-047-
Nahpeton S
06/21/89
11/29/89
11/29/89
11/29/89
11/29/89
11/30/87
11/30/87
11/30/87
11/30/88
06/23/88
06/30/88
07/27/88 | 58.02
55.97
55.61
20BACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73
47.98
20BABAB1
Sand Plain Accompleted
to
Water (ft)
58.17
57.47
56.59
55.19
53.89
62.10
62.21
60.30 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)
907.12
908.34
908.45
927.37
927.09
926.84
ML Elev
(msl, ft)
907.90
908.60
909.48
910.88
912.18
903.97
903.86
905.77 | Date 01/03/90 03/29/90 04/24/90 05/22/90 06/14/90 Date 03/16/89 04/19/89 05/17/89 06/21/89 07/19/89 08/15/89 10/05/89 | 55.20 54.51 59.70 LS Elev (msl. SI (ft) Depth to Water (ft) 47.73 47.05 46.96 46.76 46.79 LS Elev (msl. SI (ft) Depth to Water (ft) | 910.8;
905.6;
(ft) = 974.1;
205.6;
(msl, ft) = 61.7-1;
(msl, ft) = 927.0;
927.7;
927.8;
928.0;
928.0;
(ft) = 966.1;
(msl, ft) = 910.6;
912.0;
903.1;
906.0;
903.3;
906.8;
911.1; | | 08/31/87
10/02/87
11/02/87
11/02/87
133-047-2
Nahpeton S
06/21/89
07/19/89
10/05/89
10/25/89
11/29/89
133-047-
Nahpeton S
08/31/87
10/02/87
11/02/87
11/02/87
11/30/87
04/22/88
06/30/88
07/27/88
08/23/88 | 58.02
55.97
55.61
20BACD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73
47.98
20BABAB1
Sand Plain Accompleted to
Water (ft)
58.17
57.47
56.59
55.19
53.89
62.10
62.21 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)
907.12
908.34
908.45
927.37
927.09
926.84
ML Elev
(msl, ft)
907.90
908.60
909.48
910.88
912.18
903.97
903.86 | Date 01/03/90 03/29/90 04/24/90 05/22/90 06/14/90 Date 03/16/89 04/19/89 05/17/89 06/21/89 07/19/89 08/15/89 10/05/89 | 55.20 54.51 59.70 LS Elev (msl. SI (ft) Depth to Water (ft) 47.73 47.05 46.96 46.76 46.79 LS Elev (msl. SI (ft) Depth to Water (ft) | 910.8;
905.6;
,ft)=974.1;
E.)=61.7-(
WL Elem
(msl, ft)
927.0;
927.7;
928.0;
928.0;
,ft)=966.0;
(msl, ft)
910.6;
912.0;
903.1;
906.0;
903.5;
906.8;
911.1;
912.2; | | 08/31/87
10/02/87
11/02/87
11/02/87
133-047-2
Nahpeton S
06/21/89
07/19/89
10/05/89
10/25/89
11/29/89
11/29/89
133-047-
Nahpeton S
08/31/87
10/02/87
11/02/87
11/02/87
11/30/87
04/22/88
06/30/88
07/27/88
08/23/88
09/30/88 | 58.02
55.97
55.61
20BARCD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73
47.98
20BABAB1
Sand Plain Accompleted to
Water (ft)
58.17
57.47
56.59
55.19
53.89
62.10
62.21
60.30
60.30 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)
907.12
908.34
908.45
927.37
927.09
926.84
ML Elev
(msl, ft)
907.90
908.60
909.48
910.88
912.18
903.97
903.86
905.77
905.77 | Date 01/03/90 03/29/90 04/24/90 05/22/90 06/14/90 Date 03/16/89 04/19/89 05/17/89 06/21/89 07/19/89 10/05/89 10/05/89 12/01/89 | 55.20 54.51 59.70 LS Elev (msl. SI (ft) Depth to Water (ft) 47.73 47.05 46.96 46.76 46.79 LS Elev (msl. SI (ft) Depth to Water (ft) 55.47 54.07 62.88 60.02 63.77 62.51 59.23 54.91 53.79 53.75 | 910.82
905.63
,ft)=974.6
t.)=61.7-6
WL Eleven
(msl, ft)
927.09
927.77
927.86
928.03
,ft)=966.0
(msl, ft)
910.60
903.19
906.09
902.30
903.56
906.84
911.16
912.28 | | 08/31/87
10/02/87
11/02/87
11/02/87
133-047-2
Nahpeton S
06/21/89
07/19/89
10/05/89
10/05/89
10/25/89
11/29/89
11/29/89
133-047-2
Nahpeton S
08/31/87
10/02/87
11/02/87
11/02/87
11/30/87
04/22/88
06/30/88
07/27/88
08/23/88
09/30/88
10/27/88 | 58.02
55.97
55.61
20BARCD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73
47.98
20BABAB1
Sand Plain Accurate (ft)
58.17
57.47
56.59
55.19
53.89
62.10
62.21
60.30
60.30
60.30
56.19 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)
907.12
908.34
908.45
927.37
927.09
926.84
ML Elev
(msl, ft)
907.90
908.60
909.48
910.88
912.18
903.97
903.86
905.77
905.77
909.88 | Date 01/03/90 03/29/90 04/24/90 05/22/90 06/14/90 Date 03/16/89 04/19/89 05/17/89 06/21/89 07/19/89 10/05/89 10/05/89 12/01/89 | 55.20 54.51 59.70 LS Elev (msl. SI (ft) Depth to Water (ft) 47.73 47.05 46.96 46.76 46.79 LS Elev (msl. SI (ft) Depth to Water (ft) 55.47 54.07 62.88 60.02 63.77 62.51 59.23 54.91 53.79 | 910.82
905.63
,ft)=974.8
t.)=61.7-6
WL Elev
(msl, ft)
927.09
927.77
927.86
928.06
928.06
,ft)=966.0
t.)=112-13
WL Elev
(msl, ft | | 08/31/87
10/02/87
11/02/87
11/02/87
133-047-2
Wahpeton S
06/21/89
07/19/89
08/15/89
10/05/89
10/25/89
11/29/89
133-047-
Wahpeton S
08/31/87
10/02/87
11/02/87
11/02/87
11/30/87
04/22/88
06/23/88
06/30/88
07/27/88
08/23/88
09/30/88
10/27/88 | 58.02
55.97
55.61
20BARCD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73
47.98
20BABAB1
Sand Plain Am
Depth to
Water (ft)
58.17
57.47
56.59
55.19
53.89
62.10
62.21
60.30
60.30
60.30
56.19
57.92 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)
907.12
908.34
908.45
927.37
927.09
926.84
ML Elev
(msl, ft)
907.90
908.60
909.48
910.88
912.18
903.97
903.86
905.77
905.77
909.88
908.15 | Date 01/03/90 03/29/90 04/24/90 05/22/90 06/14/90 Date 03/16/89 04/19/89 05/17/89 06/21/89 07/19/89 10/05/89 10/05/89 12/01/89 01/03/90 03/30/90 | 55.20 54.51 59.70 LS Elev (msl. SI (ft) Depth to Water (ft) 47.73 47.05 46.96 46.76 46.79 LS Elev (msl. SI (ft) Depth to Water (ft) 55.47 54.07 62.88 60.02 63.77 62.51 59.23 54.91 53.79 53.75 52.98 | 910.82
905.63
,ft)=974.8
t.)=61.7-6
WL Elev
(msl, ft)
927.09
927.77
927.86
928.03
,ft)=966.0
(t.)=112-11
WL Elev
(msl, ft)
910.60
903.19
906.09
902.30
903.56
906.84
911.16
912.28
912.32
913.09 | | Date
 | 58.02
55.97
55.61
20BARCD
Shallow Sand A
Depth to
Water (ft)
67.70
66.48
66.37
47.45
47.73
47.98
20BABAB1
Sand Plain Am
Depth to
Water (ft)
58.17
57.47
56.59
55.19
53.89
62.10
62.21
60.30
60.30
60.30
56.19
57.92 | 907.31
909.36
909.72
Aguifer
WL Elev
(msl, ft)
907.12
908.34
908.45
927.37
927.09
926.84
ML Elev
(msl, ft)
907.90
908.60
909.48
910.88
912.18
903.97
903.86
905.77
905.77
909.88
908.15 | Date 01/03/90 03/29/90 04/24/90 05/22/90 06/14/90 Date 03/16/89 04/19/89 05/17/89 06/21/89 07/19/89 10/05/89 10/05/89 12/01/89 01/03/90 03/30/90 04/23/90 | 55.20 54.51 59.70 LS Elev (msl. SI (ft) Depth to Water (ft) 47.73 47.05 46.96 46.76 46.79 LS Elev (msl. SI (ft) Depth to Water (ft) 55.47 54.07 62.88 60.02 63.77 62.51 59.23 54.91 53.79 53.75 52.98 55.52 | 910.82
905.63
,ft)=974.6
t.)=61.7-6
WL Elevent (msl, ft)
927.09
927.77
927.86
928.03
,ft)=966.0
(t.)=112-11
WL Elevent (msl, ft)
910.60
903.19
906.09
902.30
903.56
906.86
911.16
912.28
913.09
910.55 | 133-047-20BABB | Wahpeton Shallow Sand Aquifer | | | SI (ft.)=53 | | | |-------------------------------|------------|-----------|-------------|------------|-----------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 00/04/02 | | 000 54 | | | | | 08/31/87 | 3320 | 929.54 | | | | | 10/02/87 | 33.89 | 928.85 | 01/04/89 | 37.19 | 925.55 | | 10/12/87 | 33.39 | 929.35 | 02/15/89 | 37.83 | 924.91 | | 10/20/87 | 33.78 | 928.96 | 03/16/89 | 37.03 | 925.71 | | 11/02/87 | 33.62 | 929.12 | 04/19/89 | 36.72 | 926.02 | | 11/17/87 | 34.00 | 928.74 | 05/17/89 | 36.17 | 926.57 | | 11/30/87 | 33.98 | 928.76 | 06/21/89 | 36.33 | 926.41 | | | | | 07/19/89 | 37.30 | 925.44 | | 02/11/88 | 3469 | 928.05 | 08/15/89 | 37.45 | 925.29 | | 04/22/88 | 35.31 | 927.43 | 10/05/89 | 37.10 | 925.64 | | 06/23/88 | 36.53 | 926.21 | 10/25/89 | 36.73 | 926.01 | | 06/30/88 | 36.75 | 925.99 | 12/01/89 | 36.90 | 925.84 | | 07/27/88 | 36.78 | 925.96 | | | | | 08/22/88 | 37.01 | 925.73 | 01/03/90 | 36.90 | 925.84 | | 08/23/88 | 37.01 | 925.73 | 03/29/90 | 36.81 | 925.93 | | 09/30/88 | 37 . 33 | 925.41 | 04/23/90 | 36.39 | 926.35 | | 10/27/88 | 36.95 | 925.79 | 05/21/90 | 37.13 | 925.61 | | 11/30/88 | 37.43 | 925.31 | 06/13/90 | 37.05 | 925.69 | | | AND NO DEC AND ADDRESS OF ADDRESS OF | |----------------|--------------------------------------| | 133-047-20BAD1 | LS Elev $(msl.ft) = 974$. | | 133-04/-20DADI | DO DIEV INSTITUTOR | | Wahpeton Buried Valley Aguifer | | | SI (ft.)=255-260 | | | |--------------------------------|------------|-----------|------------------|------------|-----------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 10/24/85 | 57 - 62 | 917.25 | 11/03/87 | 63.32 | 911.55 | | 11/01/85 | 57.71 | 917.16 | 12/01/87 | 62.34 | 912.53 | | 11/13/85 | 5733 | 917.54 | | | | | 12/10/85 | 56.97 | 917.90 | 02/11/88 | 62.91 | 911.96 | | 12/11/85 | 57.56 | 917.31 | 04/22/88 | 62.56 | 912.31 | | | | | 06/23/88 | 71.08 | 903.79 | | 04/10/86 | 59.94 | 914.93 | 06/30/88 | 72.05 | 902.82 | | 05/15/86 | 57.01 | 917.86 | 07/27/88 | 69.94 | 904.93 | | 08/27/86 | 70.68 | 904.19 | 08/23/88 | 69.14 | 905.73 | | 09/30/86 | 59.36 | 915.51 | 09/30/88 | 65.54 | 909.33 | | 10/08/86 | 58.29 | 916.58 | 10/27/88 | 65.09 | 909.78 | | 10/09/86 | 58.16 | 916.71 | 11/30/88 | 64.15 | 910.72 | | 10/10/86 | 57.75 | 917.12 | | | | | 10/11/86 | 57.52 | 917.35 | 01/05/89 | 62.97 | 911.90 | | 10/15/86 | 57.61 | 917.26 | 02/16/89 | 64.78 | 910.09 | | 10/28/86 | 58.78 | 916.09 | 03/16/89 | 64.71 | 910.16 | |
11/04/86 | 75.20 | 899.67 | 04/19/89 | 63.46 | 911.41 | | 12/01/86 | 81.24 | 893.63 | 05/17/89 | 72.61 | 902.26 | | 12/02/86 | 78.36 | 896.51 | 06/21/89 | 68.89 | 905.98 | | | | | 07/19/89 | 72.81 | 902.06 | | 01/07/87 | 79.93 | 894.94 | 08/15/89 | 71.99 | 902.88 | | 01/29/87 | 77.49 | 897.38 | 10/05/89 | 67.13 | 907.74 | | 03/03/87 | 82.21 | 892.66 | 10/25/89 | 64.25 | 910.62 | | 03/24/87 | 84.93 | 889.94 | 11/29/89 | 63.42 | 911.45 | | 05/14/87 | 68.30 | 906.57 | | | | | 07/03/87 | 70.83 | 904.04 | 01/03/90 | 62.08 | 912.79 | | 08/04/87 | 67.89 | 906.98 | 03/30/90 | 61.72 | 913.15 | | 09/01/87 | 66.67 | 908.20 | 04/24/90 | 63.91 | 910.96 | | 10/02/87 | 65.23 | 909.64 | 05/22/90 | 64.11 | 910.76 | | 10/12/87 | 66.20 | 908.67 | 06/14/90 | 69.25 | 905.62 | | 10/20/87 | 65.26 | 909.61 | | | | 133-047-20BAD2 LS Elev (msl,ft)=975.18 | Wahpeton Sand Plain Aguifer | | | SI (ft.)=135-140 | | | |-----------------------------|------------|-----------|------------------------|-----------------|-----------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 10/24/85 | 57.96 | 917.22 | 11/03/87 | 63.59 | 911.59 | | 11/01/85 | 57.99 | 917.19 | 12/01/87 | 62.55 | 912.63 | | 11/13/85 | 57.59 | 917.59 | | | | | 12/10/85 | 57.21 | 917.97 | 02/11/88 | 63.17 | 912.01 | | 12/11/85 | 57.79 | 917.39 | 04/22/88 | 62.83 | 912.35 | | | | | 06/23/88 | 71.34 | 903.84 | | 04/10/86 | 60.22 | 914.96 | 06/30/88 | 72.32 | 902.86 | | 05/15/86 | 57.25 | 917.93 | 07/27/88 | 70.22 | 904.96 | | 08/27/86 | 70.94 | 904.24 | 08/23/88 | 69.38 | 905.80 | | 09/30/86 | 59.64 | 915.54 | 09/30/88 | 65.77 | 909.41 | | 10/08/86 | 58.54 | 916.64 | 10/27/88 | 65.39 | 909.79 | | 10/09/86 | 58.45 | 916.73 | 11/30/88 | 64.42 | 910.76 | | 10/10/86 | 58.00 | 917.18 | | | | | 10/11/86 | 57.79 | 917.39 | 01/05/89 | 63.22 | 911.96 | | 10/15/86 | 57.85 | 917.33 | 02/16/89 | 65.03 | 910.15 | | 10/28/86 | 59.08 | 916.10 | 03/16/89 | 64.97 | 910.21 | | 11/04/86 | 75.51 | 899.67 | 04/19/89 | 63.73 | 911.45 | | 12/01/86 | 81.50 | 893.68 | 05/17/89 | 72.86 | 902.32 | | 12/02/86 | 78.62 | 896.56 | 06/21/89 | 69.16 | 906.02 | | | | | 07/19/89 | 73.07 | 902.11 | | 01/07/87 | 80.20 | 894.98 | 08/15/89 | 72.24 | 902.94 | | 01/29/87 | 77.77 | 897.41 | 10/05/89 | 67.35 | 907.83 | | 03/03/87 | 82.47 | 892.71 | 10/25/89 | 64.50 | 910.68 | | 03/24/87 | 85.19 | 889.99 | 11/29/89 | 63.55 | 911.63 | | 05/14/87 | 68.56 | 906.62 | | | | | 07/03/87 | 71.08 | 904.10 | 01/03/90 | 62.33 | 912.85 | | 08/04/87 | 68.15 | 907.03 | 03/30/90 | 61.98 | 913.20 | | 09/01/87 | 66.87 | 908.31 | 04/24/90 | 64.02 | 911.16 | | 10/02/87 | 65.45 | 909.73 | 05/22/90 | 64.33 | 910.85 | | 10/12/87 | 66.45 | 908.73 | 06/14/90 | 69.48 | 905.70 | | 10/20/87 | 69.24 | 905.94 | was - second of the th | SANCOL DE OUCHS | | | wanbeton | Shallow Sand A | | | | (ft.)=51-56 | |----------------------------------|---------------------|-------------------|----------|------------------------|-------------------| | Date | Depth to Water (ft) | WL Elev (msl, ft) | Date | Depth to
Water (ft) | WL Elev (msl, ft) | |
10/24/85 | 38.18 | 937.35 | 11/02/87 | 48.90 | 926.63 | | 11/01/85 | 38.03 | 937.50 | 11/17/87 | 49.13 | 926.40 | | 11/13/85 | 38.13 | 937.40 | 12/01/87 | 49.18 | 926.35 | | 12/10/85 | 38.27 | 937.26 | 12/01/01 | 17.10 | 220.33 | | 12/11/85 | 38.18 | 937.35 | 02/11/88 | 49.63 | 925.90 | | | | | 04/22/88 | 50.07 | 925.46 | | 04/10/86 | 37.93 | 937.60 | 06/23/88 | 50.29 | 925.24 | | 05/15/86 | 37.54 | 937.99 | 06/30/88 | 50.34 | 925.19 | | 08/27/86 | 37.17 | 938.36 | 07/27/88 | 50.30 | 925.23 | | 09/30/86 | 37.13 | 938.40 | 08/23/88 | 50.63 | 924.90 | | 10/08/86 | 37.18 | 938.35 | 09/30/88 | 50.96 | 924.57 | | 10/09/86 | 37.26 | 938.27 | 10/27/88 | 51.05 | 924.48 | | 10/10/86 | 36.92 | 938.61 | 11/30/88 | 51.43 | 924.10 | | 10/11/86 | 37.16 | 938.37 | | | | | 10/15/86 | 37.32 | 938.21 | 01/05/89 | 51.48 | 924.05 | | 10/20/86 | 37.56 | 937.97 | 02/16/89 | 48.46 | 927.07 | | 10/28/86 | 37.98 | 937.55 | 03/16/89 | 49.36 | 926.17 | | 11/04/86 | 38.14 | 937.39 | 04/19/89 | 49.56 | 925.97 | | 12/01/86 | 39.52 | 936.01 | 05/17/89 | 50.27 | 925.26 | | 12/02/86 | 39.57 | 935.96 | 06/21/89 | 50.69 | 924.84 | | | | | 07/19/89 | 50.06 | 925.47 | | 01/07/87 | 41.46 | 934.07 | 08/15/89 | 49.47 | 926.06 | | 01/29/87 | 42.21 | 933.32 | 10/05/89 | 48.22 | 927.31 | | 03/03/87 | 43.51 | 932.02 | 10/25/89 | 48.51 | 927.02 | | 03/24/87 | 44.15 | 931.38 | 11/29/89 | 48.69 | 926.84 | | 05/13/87 | 45.44 | 930.09 | | | | | 07/03/87 | 46.65 | 928.88 | 01/03/90 | 48.54 | 926.99 | | 08/04/87 | 47.43 | 928.10 | 03/29/90 | 47.77 | 927.76 | | 09/01/87 | 47.93 | 927.60 | 04/24/90 | 47.68 | 927.85 | | 10/02/87 | 48.51 | 927.02 | 05/22/90 | 47.52 | 928.01 | | 10/12/87 | 48.55 | 926.98 | 06/14/90 | 47.51 | 928.02 | | 10/20/87 | 48.70 | 926.83 | | | | | | -20BADAB1 | | | LS Elev (msl | | | wanpeton | Shallow Sand A | | | | (ft.)=57-62 | | - | Depth to | WL Elev | | Depth to | WL Elev | | Date
 | Water (ft) | (msl, ft) | Date
 | Water (ft) | (msl, ft) | | 05/17/89 | 58.01 | 924.45 | | | | | 06/21/89 | 57 . <i>77</i> | 924.69 | 01/03/90 | 55.99 | 926.47 | | 07/19/89 | 56.96 | 925.50 | 03/29/90 | 54.77 | 927.69 | | 08/15/89 | 56.42 | 926.04 | 04/24/90 | 54.54 | 927.92 | | 10/05/89 | 56.36 | 926.10 | 05/22/90 | 54.21 | 928.25 | | 10/25/89
11/29/89 | 57.50
56.85 | 924.96
925.61 | 06/14/90 | 54.40 | 928.06 | | | -20BADBD1 | | | | 51.3 000 45 | | | Shallow Sand A | quifer | | LS Elev (msl, | (ft.)=982.45 | | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 05/17/89 | 57.37 | 925.08 | | | | | 06/21/89 | 57.52 | 924.93 | 01/03/90 | 55.67 | 926.78 | | 7/19/89 | 56.83 | 925.62 | 03/29/90 | 54.71 | 927.74 | | | 56.21 | 926.24 | 04/24/90 | 54.48 | 927.97 | | 08/15/89 | | | | | | | | 5588 | 926.57 | 05/22/90 | 54.49 | 927.96 | | 08/15/89
10/05/89
10/25/89 | | | | 54.49
54.23 | 927.96
928.22 | | | -20BADCA1
Shallow Sand | Aguifer | | LS Elev (msl | | |----------------------|---------------------------|--|----------|---------------|-------------| | | Depth to | WL Elev | | Depth to | | | | Water (ft) | A 104 G 100 | | Water (ft) | (msl, ft) | | | 58.33 | 924.06 | | | | | 06/21/89 | 57.76 | 924.63 | 01/03/90 | 55.77 | 926.62 | | 07/19/89 | 56.26 | 926.13 | | 54.61 | 927.78 | | 08/15/89 | 56.32 | 926.07 | 04/24/90 | 54.44 | 927.95 | | 10/05/89 | 56.41 | 925.98 | 05/22/90 | 54.19 | 928.20 | | 10/25/89 | 57.27 | 925.12 | 06/14/90 | 54.21 | 928.18 | | 11/29/89 | 56.37 | 926.02 | | | | | | -20BADCA3 | | | LS Elev (r | msl,ft)=982 | | Wahpeton | Shallow Sand | Aquifer | | SI (f | :.)=73.8-85 | | | Depth to | WL Elev | | Depth to | WL Elev | | | Water (ft) | THE STATE OF S | Date | Water (ft) | (msl, ft) | | 05/17/89 | 73.19 | 908.81 | | | | | 06/21/89 | 73.91 | 908.09 | 01/03/90 | 55.41 | 926.59 | | 07/19/89 | 55.89 | 926.11 | 03/29/90 | 54.26 | 927.74 | | | | 907.42 | 04/24/90 | 54.09 | 927.91 | | 10/25/89 | 56.98 | 925.02 | 05/22/90 | 53.84 | 928.16 | | 11/29/89 | 56.03 | 925.97 | 06/14/90 | 53.86 | 928.14 | | 133-047- | 20BADCD1 | | 27 | LS Elev (msl, | ft)=982.66 | | Wahpeton | Shallow Sand A | Aguifer | | SI | | | | Depth to | WL Elev | | Depth to | WL Elev | | | Water (ft) | | Date | Water (ft) | | | | | 925.32 | | | | | | | 925.80 | 01/03/90 | 55.86 | 926.80 | | 07/19/89 | 56.25 | 926.41 | | 54.87 | | | 08/15/89 | 55.65 | 927.01 | 04/24/90 | 54.72 | 927.94 | | 10/05/89 | 55.85 | 926.81 | 05/22/90 | 54.51 | 928.15 | | 10/25/89
11/29/89 | D 1949 CS 7/10 1960/07-97 | 925.35
926.23 | 06/14/90 | | 928.07 | | , 47, 07 | 30.43 | 740.43 | | | | 133-047-20BBA2 Wahpeton Shallow LS Elev (msl, ft) = 961.34 | Wahpeton Shallow Sand Aguifer | | | | SI (ft.)=56-59 | | | |-------------------------------|------------|-----------|-------------------------------|-------------------------|-----------|--| | |
Depth to | WL Elev | | Depth to | WL Elev | | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | 09/07/75 | 4.42 | 956.92 | 12/01/86 | 23.67 | 937.67 | | | 12/02/75 | 6.12 | 955.22 | 12/02/86 | 23.55 | 937.79 | | | 01/22/76 | 6.65 | 954.69 | 01/07/87 | 24.91 | 936.43 | | | 04/09/76 | 4.47 | 956.87 | 01/29/87 | 24.97 | 936.37 | | | 06/03/76 | 5.78 | 955.56 | 03/03/87 | 25.95 | 935.39 | | | 06/17/76 | 6.20 | 955.14 | 03/24/87 | 26.78 | 934.56 | | | 06/30/76 | 6.65 | 954.69 | 05/13/87 | 26.84 | 934.50 | | | 07/21/76 | 7.46 | 953.88 | 07/03/87 | 28.14 | 933.20 | | | 08/11/76 | 8.39 | 952.95 | 08/04/87 | 28.84 | 932.50 | | | 08/24/76 | 8.82 | 952.52 | 09/01/87 | 29.17 | 932.17 | | | 09/13/76 | 9.36 | 951.98 | 10/02/87 | 30.09 | 931.25 | | | 09/28/76 | 9.71 | 951.63 | 10/12/87 | 29.69 | 931.65 | | | 11/02/76 | 10.44 | 950.90 | 10/20/87 | 30.11 | 931.23 | | | 12/07/76 | 10.84 | 950.50 | 11/03/87 | 30.16 | 931.18 | | | | | | 11/17/87 | 30.58 | 930.76 | | | 01/04/77 | 10.84 | 950.50 | 12/01/87 | 30.63 | 930.71 | | | 04/04/77 | 9.87 | 951.47 | | | 2301,1 | | | 06/07/77 | 10.33 | 951.01 | 02/11/88 | 31.43 | 929.91 | | | 07/07/77 | 12.88 | 948.46 | 04/22/88 | 32.30 | 929.04 | | | 08/10/77 | 13.38 | 947.96 | 06/23/88 | 32.98 | 928.36 | | | 09/15/77 | 13.80 | 947.54 | 06/30/88 | 33.06 | 928.28 | | | 12/12/77 | 13.78 | 947.56 | 07/27/88 | 33.09 | 928.25 | | | | | | 08/23/88 | 33.38 | 927.96 | | | 03/14/78 | 13.30 | 948.04 | 09/30/88 | 33.83 | 927.51 | | | 06/22/78 | 11.52 | 949.82 | 10/27/88 | 33.72 | 927.62 | | | 09/21/78 | 12.95 | 948.39 | 11/30/88 | 34.43 | 926.91 | | | 12/06/78 | 14.20 | 947.14 | 11/30/00 | 34.43 | 720.71 | | | | | | 01/05/89 | 34.53 | 926.81 | | | 09/17/80 | 17.44 | 943.90 | 02/16/89 | 34.46 | 926.88 | | | | | | 03/16/89 | 34.05 | 927.29 | | | 10/31/85 | 27.29 | 934.05 | 04/19/89 | 33.83 | 927.51 | | | 11/01/85 | 25.47 | 935.87 | 05/17/89 | 33.28 | 928.06 | | | 11/13/85 | 24.51 | 936.83 | 06/21/89 | 33.32 | 928.02 | | | 12/11/85 | 24.36 | 936.98 | 07/19/89 | 33.71 | 927.63 | | | | | | 08/15/89 | 33.60 | 927.74 | | | 04/10/86 | 24.26 | 937.08 | 10/05/89 | 33.54 | 927.80 | | | 09/30/86 | 23.16 | 938.18 | 10/25/89 | 33.51 | 927.83 | | | 10/08/86 | 23.25 | 938.09 | 11/29/89 | 33.74 | 927.60 | | | 10/09/86 | 23.15 | 938.19 | recommendation of adii \$6000 | 200000000000 NV - 19000 | | | | 10/10/86 | 22.86 | 938.48 | 01/02/90 | 33.58 | 927.76 | | | 10/11/86 | 23.10 | 938.24 | 03/29/90 | 33.62 | 927.72 | | | 10/15/86 | 23.08 | 938.26 | 04/24/90 | 33.56 | 927.78 | | | 10/20/86 | 22.85 | 938.49 | 05/22/90 | 33.62 | 927.72 | | | 10/28/86 | 22.99 | 938.35 | 06/14/90 | 33.82 | 927.52 | | | 11/04/86 | 22.93 | 938.41 | T = 1 = 21 2 V | 33.00 | 241.34 | | 133-047-20BBA3 LS Elev (msl,ft)=961.34 | Wahpeton Shallow Sand Aguifer | | | SI | I (ft.)=23-26 | | |-------------------------------|---------------------|-----------|----------|------------------------|--------| | Date | Depth to Water (ft) | (msl, ft) | Date | Depth to
Water (ft) | | | 09/07/75 | 3.90 | 957.44 | 09/17/80 | 16.30 | 945.04 | | 12/02/75 | 5.56 | 955.78 | | | | | | | | 10/09/85 | 24.01 | 937.33 | | 01/22/76 | 5.45 | 955.89 | 10/24/85 | 23.94 | 937.40 | | 04/04/76 | 4.27 | 957.07 | 11/01/85 | 23.97 | 937.37 | | 06/03/76 | 6.25 | 955.09 | 11/13/85 | 24.10 | 937.24 | | 06/17/76 | 6.73 | 954.61 | 12/11/85 | 24.12 | 937.22 | | 06/30/76 | 7.04 | 954.30 | | | | | 07/21/76 | 7.66 | 953.68 | 04/10/86 | 23.81 | 937.53 | | 08/11/76 | 8.35 | 952.99 | 09/30/86 | 22.61 | 938.73 | | 08/24/76 | 8.72 | 952.62 | 10/08/86 | 22.58 | 938.76 | | 09/13/76 | 9.41 | 951.93 | 10/09/86 | 22.53 | 938.81 | | 09/28/76 | 9.73 | 951.61 | 10/10/86 | 22.51 | 938.83 | | 11/02/76 | 10.44 | 950.90 | 10/11/86 | 22.52 | 938.82 | | 12/07/76 | 10.80 | 950.54 | 10/15/86 | 22.96 | 938.38 | | | | | 10/20/86 | 22.46 | 938.88 | | 01/04/77 | 10.77 | 950.57 | 10/28/86 | 22.47 | 938.87 | | 04/04/77 | 9.67 | 951.67 | 11/04/86 | 22.50 | 938.84 | | 06/07/77 | 11.25 | 950.09 | 12/01/86 | 23.05 | 938.29 | | 07/07/77 | 11.87 | 949.47 | 12/02/86 | 22.99 | 938.35 | | 08/10/77 | 11.55 | 949.79 | | | | | 09/15/77 | 12.80 | 948.54 | 01/07/87 | 23.80 | 937.54 | | 12/12/77 | 12.65 | 948.69 | 01/29/87 | 24.25 | 937.09 | | | | | 03/03/87 | 24.96 | 936.38 | | 03/14/78 | 12.40 | 948.94 | 03/24/87 | 25.30 | 936.04 | | 06/22/78 | 10.44 | 950.90 | 05/13/87 | 25.22 | 936.12 | | 09/21/78 | 11.82 | 949.52 | | | | | 12/06/78 | 12.91 | 948.43 | 08/15/89 | 0.00 | 961.34 | 133-047-20BBA4 LS Elev (msl,ft)=963.35 | Wahpeton | Shallow Sand | Aquifer | · · · · · · · · · · · · · · · · · · · | SI | (ft.)=34-37 | |----------|--------------|-----------|---------------------------------------|------------|-------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 10/09/85 | 25.98 | 937.37 | 11/17/87 | 31.25 | 932.10 | | 10/24/85 | 25.93 | 937.42 | 12/01/87 | 31.45 | 931.90 | | 11/01/85 | 25.97 | 937.38 | | | | | 11/13/85 | 26.11 | 937.24 | 02/11/88 | 32.50 | 930.85 | | 12/11/85 | 26.10 | 937.25 | 04/22/88 | 33.23 | 930.12 | | | | | 06/23/88 | 33.87 | 929.48 | | 04/10/86 | 25.76 | 937.59 | 06/30/88 | 33.98 | 929.37 | | 09/30/86 | 24.58 | 938.77 | 07/27/88 | 34.27 | 929.08 | | 10/08/86 | 24.56 | 938.79 | 08/23/88 | 34.51 | 928.84 | | 10/09/86 | 24.53 | 938.82 | 09/30/88 | 34.87 | 928.48 | | 10/10/86 | 24.50 | 938.85 | 10/27/88 | 35.15 | 928.20 | | 10/11/86 | 24.51 | 938.84 | 11/30/88 | 35.50 | 927.85 | | 10/15/86 | 24.49 | 938.86 | | | | | 10/20/86 | 24.44 | 938.91 | 01/05/89 | 35.82 | 927.53 | | 10/28/86 | 24.46 | 938.89 | 02/16/89 | 35.98 | 927.37 | | 11/04/86 | 24.48 | 938.87 | 03/16/89 | 35.57 | 927.78 | | 12/01/86 | 24.97 | 938.38 | 04/19/89 | 35.27 | 928.08 | | 12/02/86 | 24.94 | 938.41 | 05/17/89 | 34.64 | 928.71 | | | 8 | | 06/21/89 | 34.55 | 928.80 | | 01/07/87 | 25.75 | 937.60 | 07/19/89 | 35.05 | 928.30 | | 01/29/87 | 26.17 | 937.18 | 08/15/89 | 34.95 | 928.40 | | 03/03/87 | 26.85 | 936.50 | 10/05/89 | 35.03 | 928.32 | | 03/24/87 | 27.26 | 936.09 | 10/25/89 | 35.07 | 928.28 | | 05/13/87 | 28.12 | 935.23 | 11/29/89 | 35.24 | 928.11 | | 07/03/87 | 29.03 | 934.32 | | | | | 08/04/87 | 29.66 | 933.69 | 01/02/90 | 35.36 | 927.99 | | 09/01/87 | 30.10 | 933.25 | 03/29/90 | 35.38 | 927.97 | | 10/02/87 | 30.53 | 932.82 | 04/24/90 | 35.28 | 928.07 | | 10/12/87 | 30.65 | 932.70 | 05/22/90 | 35.33 | 928.02 | | 10/20/87 | 30.81 | 932.54 | 06/14/90 | 35.41 | 927.94 | | 11/03/87 | 31.08 | 932.27 | | | | 133-047-20BBA5 LS Elev (msl,ft)=960.57 | Wahpeton | Shallow Sand | Aguifer | | | (ft.)=38-41 | |-----------------------------|----------------|---|------------|------------|-------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 06/03/76 | 8.27 | 052.20 | 22.422.425 | | | | 06/03/76 | 8.56 | 952.30 | 03/03/87 | 30.98 | 929.59 | | 06/30/76 | 9.10 | 952.01 | 03/24/87 | 32.03 | 928.54 | | 07/21/76 | 10.48 | 951.47 | 05/13/87 | 29.79 | 930.78 | | 08/11/76 | 13.33 | 950.09 | 07/03/87 | 31.03 | 929.54 | | | | 947.24 | 08/04/87 | 31.12 | 929.45 | | 08/24/76
09/13/76 | 13.49
13.81 | 947.08 | 08/31/87 | 31.31 | 929.26 | | 09/13/76 | 14.08 | 946.76 | 10/02/87 | 31.81 | 928.76 | | 11/02/76 | 13.72 | 946.49 | 10/12/87 | 31.43 | 929.14 | | | | 946.85 | 10/20/87 | 31.73 | 928.84 | | 12/07/76 | 15.03 | 945.54 | 11/02/87 | 31.48 | 929.09 | | 01/04/77 | 15 10 | 0.45 45 | 11/17/87 | 31.82 | 928.75 | | 01/04/77
04/04/77 | 15.10 | 945.47 | 11/30/87 | 31.72 | 928.85 | | THE PART OF THE PART OF THE | | 947.50 | | | | | 06/07/77 | 14.75 | 945.82 | 02/11/88 | 33.16 | 927.41 | | 07/07/77 | 14.89 | 945.68 | 04/22/88 | 33.02 | 927.55 | | 08/10/77 | 15.04 | 945.53 | 06/23/88 | 35.26 | 925.31 | | 09/15/77 | 15.43 | 945.14 | 06/30/88 | 34.66 | 925.91 | | 12/12/77 | 13.59 | 946.98 | 07/27/88 | 34.61 | 925.96 | | 00//1//50 | | | 08/23/88 | 34.58 | 925.99 | | 03/14/78 | 14.34 | 946.23 | 09/30/88
 34.96 | 925.61 | | 06/22/78 | 13.29 | 947.28 | 10/27/88 | 34.52 | 926.05 | | 09/21/78 | 14.50 | 946.07 | 11/30/88 | 34.90 | 925.67 | | 12/06/78 | 15.86 | 944.71 | | | | | 00115100 | | | 01/04/89 | 34.61 | 925.96 | | 09/17/80 | 19.70 | 940.87 | 02/15/89 | 35.35 | 925.22 | | | | | 03/16/89 | 34.70 | 925.87 | | 09/25/85 | 27.68 | 932.89 | 04/19/89 | 34.47 | 926.10 | | 10/03/85 | 27.37 | 933.20 | 05/17/89 | 34.37 | 926.20 | | 10/09/85 | 27.82 | 932.75 | 06/21/89 | 34.45 | 926.12 | | 10/15/85 | 26.84 | 933.73 | 07/19/89 | 35.48 | 925.09 | | 10/23/85 | 26.40 | 934.17 | 08/15/89 | 35.55 | 925.02 | | 10/24/85 | 26.66 | 933.91 | 10/05/89 | 34.90 | 925.67 | | 11/01/85 | 26.62 | 933.95 | 10/25/89 | 34.50 | 926.07 | | | | N COLUMN TO THE | 12/01/89 | 34.58 | 925.99 | | 10/28/86 | 25.25 | 935.32 | | | | | 11/04/86 | 26.22 | 934.35 | 01/03/90 | 34.53 | 926.04 | | 12/01/86 | 28.47 | 932.10 | 03/29/90 | 34.50 | 926.07 | | | 2.22 | | 04/23/90 | 34.13 | 926.44 | | 01/07/87 | 29.81 | 930.76 | 05/21/90 | 34.89 | 925.68 | | 01/28/87 | 29.97 | 930.60 | 06/13/90 | 34.83 | 925.74 | 133-047-20BBA6 LS Elev (msl, ft) = 961.81 | Wahpeton Buried Valley Aguifer | | | SI (ft.)=268-273 | | | |--------------------------------|------------|-----------|------------------|------------|-----------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 10/24/85 | 44.62 | 917.19 | 11/03/87 | 49.84 | 911.97 | | 11/01/85 | 44.46 | 917.35 | 11/17/87 | 50.10 | 911.71 | | 11/13/85 | 44.31 | 917.50 | 12/01/87 | 48.92 | 912.89 | | 12/10/85 | 43.77 | 918.04 | | | | | 12/11/85 | 44.55 | 917.26 | 04/22/88 | 49.44 | 912.37 | | | | | 06/23/88 | 56.89 | 904.92 | | 04/10/86 | 48.59 | 913.22 | 06/30/88 | 57.54 | 904.27 | | 05/15/86 | 43.52 | 918.29 | 07/27/88 | 55.65 | 906.16 | | 08/27/86 | 57.75 | 904.06 | 07/29/88 | 55.65 | 906.16 | | 09/30/86 | 45.48 | 916.33 | 08/23/88 | 57.82 | 903.99 | | 10/08/86 | 44.68 | 917.13 | 09/30/88 | 51.90 | 909.91 | | 10/09/86 | 44.48 | 917.33 | 10/27/88 | 52.04 | 909.77 | | 10/10/86 | 44.08 | 917.73 | 11/30/88 | 52.95 | 908.86 | | 10/11/86 | 43.99 | 917.82 | | | | | 10/15/86 | 43.95 | 917.86 | 01/05/89 | 49.75 | 912.06 | | 10/28/86 | 45.28 | 916.53 | 02/16/89 | 53.68 | 908.13 | | 11/04/86 | 59.79 | 902.02 | 03/16/89 | 53.50 | 908.31 | | 12/01/86 | 66.88 | 894.93 | 04/19/89 | 49.73 | 912.08 | | 12/02/86 | 63.49 | 898.32 | 05/17/89 | 58.20 | 903.61 | | | | | 06/21/89 | 55.13 | 906.68 | | 01/07/87 | 64.92 | 896.89 | 07/19/89 | 58.83 | 902.98 | | 01/29/87 | 62.98 | 898.83 | 08/15/89 | 57.79 | 904.02 | | 03/03/87 | 66.99 | 894.82 | 10/05/89 | 55.95 | 905.86 | | 03/24/87 | 69.73 | 892.08 | 10/25/89 | 50.65 | 911.16 | | 05/14/87 | 54.69 | 907.12 | 11/29/89 | 49.68 | 912.13 | | 07/03/87 | 59.08 | 902.73 | | | | | 08/04/87 | 56.50 | 905.31 | 01/02/90 | 53.80 | 908.01 | | 09/01/87 | 54.74 | 907.07 | 03/30/90 | 48.50 | 913.31 | | 10/02/87 | 53.20 | 908.61 | 04/24/90 | 52.23 | 909.58 | | 10/12/87 | 55.03 | 906.78 | 05/22/90 | 52.75 | 909.06 | | 10/20/87 | 53.88 | 907.93 | 06/14/90 | 57.60 | 904.21 | 133-047-20BBA7 LS Elev (msl, ft) = 961.9 | Wahpeton Sand Plain Aquifer | | | t.) = 110 - 115 | | | |-----------------------------|------------|-----------|-----------------|------------|-----------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 10/24/85 | 45.61 | 916.29 | 11/03/87 | 49.75 | 912.15 | | 11/01/85 | 44.48 | 917.42 | 11/17/87 | 50.12 | 911.78 | | 11/13/85 | 44.35 | 917.55 | 12/01/87 | 48.90 | 913.00 | | 12/10/85 | 43.77 | 918.13 | | | | | 12/11/85 | 44.25 | 917.65 | 04/22/88 | 49.47 | 912.43 | | | | | 06/23/88 | 56.89 | 905.01 | | 04/10/86 | 48.37 | 913.53 | 06/30/88 | 57.56 | 904.34 | | 05/15/86 | 43.52 | 918.38 | 07/27/88 | 55.65 | 906.25 | | 08/27/86 | 57.53 | 904.37 | 08/23/88 | 57.49 | 904.41 | | 09/30/86 | 45.48 | 916.42 | 09/30/88 | 51.92 | 909.98 | | 10/08/86 | 44.68 | 917.22 | 10/27/88 | 52.03 | 909.87 | | 10/09/86 | 44.49 | 917.41 | 11/30/88 | 52.62 | 909.28 | | 10/10/86 | 44.09 | 917.81 | | | | | 10/11/86 | 44.00 | 917.90 | 01/05/89 | 49.63 | 912.27 | | 10/15/86 | 43.97 | 917.93 | 02/16/89 | 53.32 | 908.58 | | 10/28/86 | 45.30 | 916.60 | 03/16/89 | 53.16 | 908.74 | | 11/04/86 | 59.80 | 902.10 | 04/19/89 | 49.76 | 912.14 | | 12/01/86 | 66.91 | 894.99 | 05/17/89 | 58.20 | 903.70 | | 12/02/86 | 63.49 | 898.41 | 06/21/89 | 55.15 | 906.75 | | | | | 07/19/89 | 58.82 | 903.08 | | 01/07/87 | 64.91 | 896.99 | 08/15/89 | 57.81 | 904.09 | | 01/29/87 | 63.00 | 898.90 | 10/05/89 | 55.59 | 906.31 | | 03/03/87 | 66.97 | 894.93 | 10/25/89 | 50.69 | 911.21 | | 03/24/87 | 70.04 | 891.86 | 11/29/89 | 49.73 | 912.17 | | 05/14/87 | 54.70 | 907.20 | Mi. | | | | 07/03/87 | 58.76 | 903.14 | 01/02/90 | 53.39 | 908.51 | | 08/04/87 | 56.20 | 905.70 | 03/30/90 | 48.53 | 913.37 | | 09/01/87 | 54.42 | 907.48 | 04/24/90 | 51.94 | 909.96 | | 10/02/87 | 52.72 | 909.18 | 05/22/90 | 52.44 | 909.46 | | 10/12/87 | 54.64 | 907.26 | 06/14/90 | 57.31 | 904.59 | | 10/20/87 | 53.61 | 908.29 | | | | | | | | | | | LS Elev (msl,ft)=961.97133-047-20BBA8 | Wahpeton Shallow Sand Aquifer | | | | SI | (ft.) = 58 - 63 | |-------------------------------|------------|-----------|----------|------------|-----------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 10/24/85 | 24.77 | 937.20 | 10/20/87 | 30.67 | 931.30 | | 10/30/85 | 24.84 | 937.13 | 11/02/87 | 30.74 | 931.23 | | 11/01/85 | 25.95 | 936.02 | 11/17/87 | 31.17 | 930.80 | | 11/13/85 | 25.21 | 936.76 | 12/01/87 | 31.29 | 930.68 | | 12/10/85 | 25.31 | 936.66 | | | | | 12/11/85 | 25.18 | 936.79 | 02/11/88 | 32.02 | 929.95 | | | | | 04/22/88 | 32.86 | 929.11 | | 04/10/86 | 24.90 | 937.07 | 06/23/88 | 33.56 | 928.41 | | 05/15/86 | 24.51 | 937.46 | 06/30/88 | 33.65 | 928.32 | | 08/27/86 | 24.10 | 937.87 | 07/27/88 | 33.69 | 928.28 | | 09/30/86 | 23.80 | 938.17 | 08/23/88 | 33.99 | 927.98 | | 10/08/86 | 23.88 | 938.09 | 09/30/88 | 34.43 | 927.54 | | 10/09/86 | 23.78 | 938.19 | 10/27/88 | 34.32 | 927.65 | | 10/10/86 | 23.51 | 938.46 | 11/30/88 | 34.99 | 926.98 | | 10/11/86 | 23.74 | 938.23 | | | | | 10/15/86 | 23.71 | 938.26 | 01/05/89 | 35.10 | 926.87 | | 10/20/86 | 23.50 | 938.47 | 02/16/89 | 35.00 | 926.97 | | 10/28/86 | 23.61 | 938.36 | 03/16/89 | 34.64 | 927.33 | | 11/04/86 | 23.60 | 938.37 | 04/19/89 | 34.40 | 927.57 | | 12/01/86 | 24.36 | 937.61 | 05/17/89 | 33.90 | 928.07 | | 12/02/86 | 24.25 | 937.72 | 06/21/89 | 33.90 | 928.07 | | | | | 07/19/89 | 34.29 | 927.68 | | 01/07/87 | 25.54 | 936.43 | 08/15/89 | 34.22 | 927.75 | | 01/29/87 | 25.63 | 936.34 | 10/05/89 | 34.14 | 927.83 | | 03/03/87 | 26.60 | 935.37 | 10/25/89 | 34.09 | 927.88 | | 03/24/87 | 27.03 | 934.94 | 11/29/89 | 34.34 | 927.63 | | 05/13/87 | 27.50 | 934.47 | | | | | 07/03/87 | 28.77 | 933.20 | 01/02/90 | 34.17 | 927.80 | | 08/04/87 | 29.47 | 932.50 | 03/29/90 | 34.22 | 927.75 | | 09/01/87 | 29.82 | 932.15 | 04/24/90 | 34.15 | 927.82 | | 10/02/87 | 30.68 | 931.29 | 05/22/90 | 34.21 | 927.76 | | 10/12/87 | 30.38 | 931.59 | 06/14/90 | 34.40 | 927.57 | LS Elev (msl,ft)=959.42 SI (ft.)=113-118 133-047-20BBABB1 | Wahpeton Sand Plain Aguifer | | | SI (ft.)=113- | | | | |-----------------------------|--|---|--|--|--|--| | Depth to
Water (ft) | WL
Elev
(msl, ft) | Date | Depth to
Water (ft) | WL Elev
(msl, ft) | | | | 50.64 | 908.78 | 03/16/89 | 48.88 | 910.54 | | | | 51.17 | 908.25 | 04/19/89 | 46.93 | 912.49 | | | | 49.79 | 909.63 | 05/17/89 | 55.57 | 903.85 | | | | 48.54 | 910.88 | 06/21/89 | 53.04 | 906.38 | | | | ** | | 07/19/89 | 56.59 | 902.83 | | | | 47.04 | 912.38 | 08/15/89 | 54.73 | 904.69 | | | | 54.30 | 905.12 | 10/05/89 | 52.97 | 906.45 | | | | 54.38 | 905.04 | 10/25/89 | 48.09 | 911.33 | | | | 52.57 | 906.85 | 12/01/89 | 46.95 | 912.47 | | | | 53.94 | 905.48 | | | | | | | 49.25 | 910.17 | 01/03/90 | 46.64 | 912.78 | | | | 51.64 | 907.78 | 03/30/90 | 46.10 | 913.32 | | | | 48.64 | 910.78 | 04/23/90 | 48.13 | 911.29 | | | | | | 05/21/90 | 47.65 | 911.77 | | | | 50.59 | 908.83 | 06/13/90 | 54.97 | 904.45 | | | | 47.32 | 912.10 | | | | | | | | Sand Plain Act
Depth to
Water (ft)
50.64
51.17
49.79
48.54
47.04
54.30
54.38
52.57
53.94
49.25
51.64
48.64 | Sand Plain Aguifer Depth to WL Elev Water (ft) (msl, ft) 50.64 908.78 51.17 908.25 49.79 909.63 48.54 910.88 47.04 912.38 54.30 905.12 54.38 905.04 52.57 906.85 53.94 905.48 49.25 910.17 51.64 907.78 48.64 910.78 | Sand Plain Aguifer Depth to WL Elev Water (ft) (msl, ft) 50.64 908.78 03/16/89 51.17 908.25 04/19/89 49.79 909.63 05/17/89 48.54 910.88 06/21/89 07/19/89 47.04 912.38 08/15/89 54.30 905.12 10/05/89 54.38 905.04 10/25/89 52.57 906.85 12/01/89 53.94 905.48 49.25 910.17 01/03/90 51.64 907.78 03/30/90 48.64 910.78 04/23/90 50.59 908.83 06/13/90 | Sand Plain Acuifer SI (ff) Depth to Water (ft) (msl, ft) Date Water (ft) 50.64 908.78 51.17 908.25 949.79 909.63 97.17/89 55.57 909.63 97.19/89 56.59 909.63 97.19/89 56.59 909.63 97.19/89 56.59 909.63 97.19/89 56.59 909.63 97.19/89 56.59 909.63 97.19/89 56.59 909.63 909.12 909.63 909.12 909.63 909.12 909.63 909.12 909.63 909.12 909.63 909.12 909.63 909.12 909.63 909.12 909.63 909.12 909.63 909.12 909.63 909.12 909.63 909.12 909.63 909.12 909.63 90 | | | 133-047-20BBABB2 LS Elev (msl, ft) = 959.67 | Wahpeton | Shallow Sand | Aquifer | | SI | (ft.) = 58 - 63 | |----------|--------------|-----------|----------|------------|-----------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | | | | | | | 08/31/87 | 30.37 | 929.30 | 01/04/89 | 33.46 | 926.21 | | 10/02/87 | 30.57 | 929.10 | 02/15/89 | 34.09 | 925.58 | | 10/12/87 | 30.45 | 929.22 | 03/16/89 | 33.39 | 926.28 | | 10/20/87 | 30.50 | 929.17 | 04/19/89 | 33.40 | 926.27 | | 11/02/87 | 30.32 | 929.35 | 05/17/89 | 33.49 | 926.18 | | 11/17/87 | 30.71 | 928.96 | 06/21/89 | 33.48 | 926.19 | | 11/30/87 | 30.80 | 928.87 | 07/19/89 | 34.55 | 925.12 | | | | | 08/15/89 | 34.62 | 925.05 | | 02/11/88 | 31.36 | 928.31 | 10/05/89 | 33.77 | 925.90 | | 04/22/88 | 31.95 | 927.72 | 10/25/89 | 33.42 | 926.25 | | 06/23/88 | 33.48 | 926.19 | 12/01/89 | 33.49 | 926.18 | | 06/30/88 | 33.67 | 926.00 | | | | | 07/27/88 | 33.59 | 926.08 | 01/03/90 | 33.39 | 926.28 | | 08/23/88 | 33.50 | 926.17 | 03/29/90 | 33.41 | 926.26 | | 09/30/88 | 33.77 | 925.90 | 04/23/90 | 33.08 | 926.59 | | 10/27/88 | 33.45 | 926.22 | 05/21/90 | 33.78 | 925.89 | | 11/30/88 | 33.56 | 926.11 | 06/13/90 | 33.71 | 925.96 | ## 133-047-20BBBAB1 | | -20BBBAB1
Buried Vallev | Aguifer | | LS Elev (msl | ft)=959.09 | |----------|----------------------------|-------------------|----------------------|------------------------|------------------| | Date | Depth to
Water (ft) | WL Elev (msl, ft) | Date | Depth to
Water (ft) | WL Elev | | 08/31/87 | 50.18 | 908.91 | 02/15/89 | 46.96 | 912.13 | | 10/02/87 | 50.33 | 908.76 | 03/16/89 | 47.44 | 911.65 | | 10/20/87 | 48.74 | 910.35 | 04/19/89 | 46.54 | 912.55 | | 11/02/87 | 48.89 | 910.20 | 05/17/89 | 55.12 | 903.97 | | 11/30/87 | 48.24 | 910.85 | 06/21/89 | 52.68 | 906.41 | | | | | 07/19/89 | 56.18 | 902.91 | | 04/22/88 | 46.73 | 912.36 | 08/15/89 | 54.22 | 904.87 | | 06/23/88 | 53.78 | 905.31 | 10/05/89 | 52.14 | 906.95 | | 06/30/88 | 53.83 | 905.26 | 10/25/89 | 47.80 | 911.29 | | 07/27/88 | 52.06 | 907.03 | 12/01/89 | 46.66 | 912.43 | | 08/23/88 | 53.09 | 906.00 | | | | | 09/30/88 | 48.93 | 910.16 | 01/03/90 | 46.32 | 912.77 | | 10/27/88 | 50.83 | 908.26 | 03/30/90 | 45.77 | 913.32 | | 11/30/88 | 47.79 | 911.30 | 04/23/90
05/21/90 | 47.64
47.26 | 911.45
911.83 | | 01/04/89 | 49.75 | 909.34 | 06/13/90 | 54.12 | 904.97 | | | 20BBBAB2 | | | LS Elev (msl | | |----------|-----------------------------|-------------------|----------------------|------------------------|----------------------------| | Wahpeton | Buried Vallev | | | | t.)=193-198 | | Date | Depth to
Water (ft) | WL Elev (msl, ft) | Date | Depth to
Water (ft) | WL Elev (msl, ft) | | 08/31/87 | 49.98 | 908.97 | 02/15/89 | 46.77 | 912.18 | | 10/02/87 | 50.14 | 908.81 | 03/16/89 | 47.25 | 911.70 | | 10/20/87 | 48.58 | 910.37 | 04/19/89 | 46.35 | 912.60 | | 11/02/87 | 48.65 | 910.30 | 05/17/89 | 54.92 | 904.03 | | 11/30/87 | 48.13 | 910.82 | 06/21/89 | 52.50 | 906.45 | | | | | 07/19/89 | 55.98 | 902.97 | | 04/22/88 | 46.55 | 912.40 | 08/15/89 | 54.01 | 904.94 | | 06/23/88 | 53.59 | 905.36 | 10/05/89 | 51.92 | 907.03 | | 06/30/88 | 53.64 | 905.31 | 10/25/89 | 47.60 | 911.35 | | 07/27/88 | 51.85 | 907.10 | 12/01/89 | 46.46 | 912.49 | | 07/27/88 | 51.85 | 907.10 | 12/01/89 | 40.40 | 312.43 | | 08/23/88 | 52.85 | 906.10 | 01/03/00 | 46 10 | 012 05 | | | | | 01/03/90 | 46.10 | 912.85 | | 09/30/88 | 48.74 | 910.21 | 03/30/90 | 45.59 | 913.36 | | 10/27/88 | 50.60 | 908.35 | 04/23/90 | 47.43 | 911.52 | | 11/30/88 | 47.58 | 911.37 | 05/21/90 | 47.07 | 911.88 | | 01/04/89 | 49.52 | 909.43 | 06/13/90 | 53.89 | 905.06 | | 133-047- | -20BBBAB3 | | | LS Elev (msl | .ft)=958.93 | | | Sand Plain Acu | uifer | E | | t.)=118-123 | | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 08/31/87 | 49.99 | 908.94 | 03/16/89 | 47.27 | 911.66 | | 10/02/87 | 50.13 | 908.80 | 04/19/89 | 46.37 | 912.56 | | 11/02/87 | 48.59 | 910.34 | 05/17/89 | 54.94 | 903.99 | | 11/30/87 | 48.16 | 910.77 | 06/21/89 | 52.53 | 906.40 | | | | | 07/19/89 | 55.99 | 902.94 | | 04/22/88 | 46.55 | 912.38 | 08/15/89 | 53.99 | 904.94 | | 06/23/88 | 53.57 | 905.36 | 10/05/89 | 51.89 | 907.04 | | 06/30/88 | 53.63 | 905.30 | 10/25/89 | 47.61 | 911.32 | | 07/27/88 | 51.85 | 907.08 | 12/01/89 | 46.46 | 912.47 | | 08/23/88 | 52.82 | 906.11 | ,, | | | | 09/30/88 | 48.74 | 910.19 | 01/03/90 | 46.13 | 912.80 | | 10/27/88 | 50.56 | 908.37 | 03/30/90 | 45.60 | 913.33 | | 11/30/88 | 47.52 | 911.41 | 04/23/90 | 47.44 | 911.49 | | 11/30/00 | 47.54 | 711.41 | 05/21/90 | 47.07 | 911.86 | | 01/04/89 | 49.48 | 909.45 | 06/13/90 | 53.86 | 905.07 | | 02/15/89 | 46.77 | 912.16 | 00/13/30 | 33.00 | 303.07 | | | | 312.10 | | | AND RESIDENCE MANAGEMENT | | | -20BBBAB4
Sand Plain Aco | uifer | | LS Elev (msl
SI | ,ft)=958.87
(ft.)=78-83 | | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 08/31/87 | 49.85 | 909.02 | 02/15/89 | 46.70 | 912.17 | | 10/02/87 | 50.05 | 908.82 | 03/16/89 | 47.18 | 911.69 | | 11/02/87 | 48.46 | 910.41 | 04/19/89 | 46.26 | 912.61 | | 11/30/87 | 48.10 | 910.77 | 05/17/89 | 54.83 | 904.04 | | ,, , , | | 240.11 | 06/21/89 | 52.43 | 906.44 | | 04/20/88 | 46.46 | 912.41 | 07/19/89 | 55.91 | 902.96 | | 04/22/88 | 46.46 | 912.41 | 08/15/89 | 53.89 | 904.98 | | 06/23/88 | 53.48 | 905.39 | 10/05/89 | 51.77 | 907.10 | | 06/30/88 | 53.52 | 905.35 | 10/05/89 | 47.52 | 911.35 | | 07/27/88 | 51.73 | 907.14 | 12/01/89 | 46.47 | 912.40 | | 08/23/88 | 52.71 | 906.16 | 12/01/89 | 40.4/ | 712.4U | | | | | 01 /02 /00 | 16 02 | 012 04 | | 09/30/88 | 48.63 | 910.24 | 01/03/90 | 46.03
45.49 | 912.84
913.38 | | 10/27/88 | 50.45 | 908.42 | 03/30/90 | | | | 11/30/88 | 47.38 | 911.49 | 04/23/90 | 47.33 | 911.54
911.90 | | 01/04/89 | 49.16 | 909.71 | 05/21/90
06/13/90 | 46.97
53.75 | 905.12 | | 01/04/09 | 47.10 | JUJ./1 | 00/13/90 | 33.73 | 903.12 | 133-047-20BBBAB5 Wahpeton Shallow Sand Aguife | | -20BBBBBB
Shallow Sand A | Aguifer | | LS Elev (msl
SI | ,ft)=958.95
(ft.)=43-53 | |----------|-----------------------------|-----------|----------|--------------------|----------------------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 08/31/87 | 29.12 | 929.83 | 01/04/89 | 31.39 | 927.56 | | 10/02/87 | 29.03 | 929.92 | 02/15/89 | 31.85 | 927.10
| | 10/12/87 | 29.16 | 929.79 | 03/16/89 | 31.45 | 927.50 | | 10/20/87 | 29.05 | 929.90 | 04/19/89 | 31.38 | 927.57 | | 11/02/87 | 29.00 | 929.95 | 05/17/89 | 31.74 | 927.21 | | 11/17/87 | 29.10 | 929.85 | 06/21/89 | 31.57 | 927.38 | | 11/30/87 | 29.10 | 929.85 | 07/19/89 | 32.75 | 926.20 | | | | | 08/15/89 | 32.93 | 926.02 | | 02/12/88 | 29.60 | 929.35 | 10/05/89 | 31.85 | 927.10 | | 04/22/88 | 30.25 | 928.70 | 10/25/89 | 31.57 | 927.38 | | 06/23/88 | 31.95 | 927.00 | 12/01/89 | 31.55 | 927.40 | | 06/30/88 | 32.09 | 926.86 | | | | | 07/27/88 | 31.95 | 927.00 | 01/03/90 | 31.40 | 927.55 | | 08/23/88 | 31.65 | 927.30 | 03/29/90 | 31.58 | 927.37 | | 09/30/88 | 31.76 | 927.19 | 04/23/90 | 31.39 | 927.56 | | 10/27/88 | 31.45 | 927.50 | 05/21/90 | 31.90 | 927.05 | | 11/30/88 | 31.41 | 927.54 | 06/13/90 | 31.85 | 927.10 | | LS Elev | (msl, ft) = 964.59 | |---------|--------------------| | | LS Elev | | Wahpeton | Shallow Sand | Aguifer | | SI | (ft.)=42-45 | |----------|--------------|-----------|----------|------------|-------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 10/09/85 | 26.75 | 937.84 | 11/17/87 | 33.39 | 931.20 | | 10/24/85 | 26.75 | 937.84 | 12/01/87 | 33.56 | 931.03 | | 11/01/85 | 26.70 | 937.89 | | | | | 11/13/85 | 26.86 | 937.73 | 02/11/88 | 34.37 | 930.22 | | 12/11/85 | 26.85 | 937.74 | 04/22/88 | 35.01 | 929.58 | | | | | 06/23/88 | 35.54 | 929.05 | | 04/10/86 | 26.76 | 937.83 | 06/30/88 | 35.61 | 928.98 | | 09/30/86 | 25.38 | 939.21 | 07/27/88 | 35.82 | 928.77 | | 10/08/86 | 25.45 | 939.14 | 08/23/88 | 36.03 | 928.56 | | 10/09/86 | 25.38 | 939.21 | 09/30/88 | 36.46 | 928.13 | | 10/10/86 | 25.27 | 939.32 | 10/27/88 | 36.65 | 927.94 | | 10/11/86 | 25.35 | 939.24 | 11/30/88 | 37.09 | 927.50 | | 10/15/86 | 25.35 | 939.24 | 8 | | | | 10/20/86 | 25.29 | 939.30 | 01/05/89 | 37.31 | 927.28 | | 10/28/86 | 25.34 | 939.25 | 02/16/89 | 36.34 | 928.25 | | 11/04/86 | 25.41 | 939.18 | 03/16/89 | 36.49 | 928.10 | | 12/01/86 | 25.92 | 938.67 | 04/19/89 | 36.58 | 928.01 | | 12/02/86 | 25.84 | 938.75 | 05/17/89 | 35.88 | 928.71 | | | | | 06/21/89 | 35.94 | 928.65 | | 01/07/87 | 26.91 | 937.68 | 07/19/89 | 36.08 | 928.51 | | 01/29/87 | 27.25 | 937.34 | 08/15/89 | 36.00 | 928.59 | | 03/03/87 | 28.13 | 936.46 | 10/05/89 | 35.97 | 928.62 | | 03/24/87 | 28.56 | 936.03 | 10/25/89 | 36.08 | 928.51 | | 05/13/87 | 29.61 | 934.98 | 11/29/89 | 36.33 | 928.26 | | 07/03/87 | 30.77 | 933.82 | | | | | 08/04/87 | 31.51 | 933.08 | 01/02/90 | 36.24 | 928.35 | | 09/01/87 | 32.05 | 932.54 | 03/29/90 | 36.08 | 928.51 | | 10/02/87 | 32.63 | 931.96 | 04/24/90 | 36.02 | 928.57 | | 10/12/87 | 32.72 | 931.87 | 05/22/90 | 35.98 | 928.61 | | 10/20/87 | 32.92 | 931.67 | 06/14/90 | 35.98 | 928.61 | | 11/03/87 | 33.22 | 931.37 | | | | | 133-047-20BBD2
Wahpeton Shallow Sand Aquifer | | | | LS Elev (msl,ft)=966.
SI (ft.)=0 | | | |---|---------------------|-----------|----------|-------------------------------------|-----------------|--| | | Depth to | WL Elev | | Depth to | WL Elev | | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | 09/15/77 | 15.61 | 950.84 | 12/06/78 | 16.19 | 950.26 | | | 06/22/78 | 14.07 | 952.38 | 09/17/80 | 19.56 | 946.89 | | | 09/21/78 | 15.20 | 951.25 | | | | | | 133-047-2 | | | | LS Elev (msl | | | | Wahpeton | Shallow Sand I | | | | (ft.) = 42 - 45 | | | | Depth to | WL Elev | | Depth to | WL Elev | | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | 10/09/85 | 27.16 | 937.43 | 11/17/87 | 33.85 | 930.74 | | | 10/24/85 | 27.21 | 937.38 | 12/01/87 | 34.08 | 930.51 | | | 11/01/85 | 27.18 | 937.41 | | | | | | 11/13/85 | 27.35 | 937.24 | 02/11/88 | 34.70 | 929.89 | | | 12/11/85 | 27.35 | 937.24 | 04/22/88 | 35.36 | 929.23 | | | | | | 06/23/88 | 35.88 | 928.71 | | | 04/10/86 | 27.28 | 937.31 | 06/30/88 | 35.92 | 928.67 | | | 09/30/86 | 25.86 | 938.73 | 07/27/88 | 36.12 | 928.47 | | | 10/08/86 | 25.92 | 938.67 | 08/23/88 | 36.43 | 928.16 | | | 10/09/86 | 25.80 | 938.79 | 09/30/88 | 36.91 | 927.68 | | | 10/10/86 | 25.78 | 938.81 | 10/27/88 | 37.13 | 927.46 | | | 10/11/86 | 25.83 | 938.76 | 11/30/88 | 37.50 | 927.09 | | | 10/15/86 | 25.81 | 938.78 | | | | | | 10/20/86 | 25.78 | 938.81 | 01/05/89 | 37.66 | 926.93 | | | 10/28/86 | 25.88 | 938.71 | 02/16/89 | 37.27 | 927.32 | | | 11/04/86 | 25.87 | 938.72 | 03/16/89 | 37.20 | 927.39 | | | 12/01/86 | 26.37 | 938.22 | 04/19/89 | 37.00 | 927.59 | | | 12/02/86 | 26.37 | 938.22 | 05/17/89 | 36.65 | 927.94 | | | | and the transfer of | | 06/21/89 | 36.55 | 928.04 | | | 01/07/87 | 27.38 | 937.21 | 07/19/89 | 36.55 | 928.04 | | | 01/29/87 | 27.80 | 936.79 | 08/15/89 | 36.38 | 928.21 | | | 03/03/87 | 28.56 | 936.03 | 10/05/89 | 36.34 | 928.25 | | | 03/24/87 | 28.98 | 935.61 | 10/25/89 | 36.60 | 927.99 | | | 05/13/87 | 30.11 | 934.48 | 11/29/89 | 36.78 | 927.81 | | | 07/03/87 | 31.23 | 933.36 | 11/23/03 | 30.73 | 227.01 | | | 08/04/87 | 31.23 | 932.64 | 01/02/90 | 36.65 | 927.94 | | | 09/01/87 | 32.46 | 932.13 | 03/29/90 | 36.44 | 928.15 | | | 10/01/87 | 33.53 | 932.13 | 04/24/90 | 36.42 | 928.13 | | | | | | | | | | | 10/12/87 | 33.25 | 931.34 | 05/22/90 | 36.32 | 928.27 | | | 10/20/87 | 33.36 | 931.23 | 06/14/90 | 36.30 | 928.29 | | | 11/03/87 | 33.65 | 930.94 | | | | | 133-047-20BCD1 LS Elev (msl,ft)=964.22 SI (ft.)=38-44 Wahpeton Shallow Sand Aquifer | wandeton | Shallow Sand | Adulier | | SI | (ft.) = 38 - 44 | |----------|--------------|-----------|----------|------------|-----------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 09/07/75 | 7.36 | 956.86 | 06/07/77 | 15.03 | 949.19 | | 12/02/75 | 8.49 | 955.73 | 07/07/77 | 15.38 | 948.84 | | | | | 08/10/77 | 15.81 | 948.41 | | 01/22/76 | 9.71 | 954.51 | 09/15/77 | 16.25 | 947.97 | | 04/09/76 | 8.72 | 955.50 | | | | | 06/03/76 | 8.59 | 955.63 | 06/22/78 | 14.99 | 949.23 | | 06/17/76 | 8.87 | 955.35 | 12/06/78 | 16.58 | 947.64 | | 06/30/76 | 9.33 | 954.89 | | | | | 07/21/76 | 10.02 | 954.20 | 09/17/80 | 20.07 | 944.15 | | 08/11/76 | 10.59 | 953.63 | | | | | 08/24/76 | 11.79 | 952.43 | 10/09/85 | 26.94 | 937.28 | | 09/13/76 | 12.45 | 951.77 | 10/24/85 | 27.00 | 937.22 | | 09/28/76 | 12.75 | 951.47 | 11/01/85 | 27.00 | 937.22 | | 11/02/76 | 12.78 | 951.44 | 11/13/85 | 26.82 | 937.40 | | 12/07/76 | 12.43 | 951.79 | 12/11/85 | 26.89 | 937.33 | | 01/04/77 | 13.76 | 950.46 | 04/10/86 | 26.84 | 937.38 | | 04/04/77 | 14.62 | 949.60 | c . | | | | | | | | | | ## 133-047-20BCD3 | 133-047-2
Wahpeton | 20BCD3
Sand Plain Aco | uifer | | LS Elev (msl
SI (f | ,ft)=964.07
t.)=130-135 | |--|--|--|--|--|--| | | Depth to
Water (ft) | (msl, ft) | Date | Depth to
Water (ft) | | | 08/31/87
10/01/87
10/12/87
10/20/87
11/03/87
11/17/87
12/01/87
02/11/88
04/22/88
06/23/88 | 56.28
54.87
54.75
53.53
53.15
52.90
52.26
52.08
52.81
60.11 | 907.79
909.20
909.32
910.54
910.92
911.17
911.81
911.99
911.26
903.96 | 01/05/89
02/16/89
03/16/89
04/19/89
05/17/89
06/21/89
07/19/89
08/15/89
10/05/89
10/25/89 | 52.78
52.78
52.31
60.48
58.41
62.53
60.65
55.07 | 912.32
911.29
911.76
903.59
905.66
901.54
903.42
909.00
910.46
911.85 | | 06/30/88
07/27/88
08/23/88
09/30/88
10/27/88
11/30/88 | 59.92
57.78
56.80
55.17
54.01
52.23 | 904.15
906.29
907.27
908.90
910.06
911.84 | 01/02/90
03/30/90
04/24/90
05/22/90
06/14/90 | 52.21
51.57
53.03 | 911.86
912.50
911.04
911.39
907.12 | | 133-047-20BCD4 | LS Elev | (msl, ft) = 964.09 | |----------------|---------|--------------------| | | | | | Wahpeton Shallow Sand Aquifer | | | SI | (ft.) = 36 - 46 | | |-------------------------------|------------|-----------|----------|-----------------|------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 08/31/87 | 31.26 | 932.83 | | | | | 10/01/87 | 31.81 | 932.28 | 01/05/89 | 35.61 | 928.48 | | 10/12/87 | 31.95 | 932.14 | 02/16/89 | 36.71 | 927.38 | | 10/20/87 | 32.15 | 931.94 | 03/16/89 | 36.59 | 927.50 | | 11/03/87 | 31.44 | 932.65 | 04/19/89 | 36.28 | 927.81 | | 11/17/87 | 31.65 | 932.44 | 05/17/89 | 36.03 | 928.06 | | 12/01/87 | 32.81 | 931.28 | 08/15/89 | 35.77 | 928.32 | | | | | 10/05/89 | 35.71 | 928.38 | | 02/11/88 | 33.63 | . 930.46 | 10/25/89 | 35.95 | 928.14 | | 04/22/88 | 34.35 | 929.74 | 11/29/89 | 36.16 | 927.93 | | 06/23/88 | 34.93 | 929.16 | | | | | 06/30/88 | 34.96 | 929.13 | 01/02/90 | 36.08 | 928.01 | | 07/27/88 | 35.20 | 928.89 | 03/29/90 | 35.90 | 928.19 | | 08/23/88 | 3550 | 928.59 | 04/24/90 | 35.93 | 928.16 | | 09/30/88 | 35.95 | 928.14 | 05/22/90 | 35.79 | 928.30 | | 10/27/88 | 36.21 | 927.88 | 06/14/90 | 35.75 | 928.34 | | 11/30/88 | 36.58 | 927.51 | | | | | 133-047-2 | OBDD | | | LS Elev (msl, | ft)=968.24 | | 100 | | | | | | | 133-047-20BD | 1 | 33- | 04 | -20 | BD | n | |--------------|---|-----|----|-----|----|---| |--------------|---|-----|----|-----|----|---| | Wahpeton Shallow Sand Aquifer | | | | SI | (ft.)=0-30 | |-------------------------------|------------|-----------|----------|------------|------------| | | Depth to | WL Elev | | Depth to
| WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 06/17/76 | 9.39 | 958.85 | 01/04/77 | 14.53 | 953.71 | | 06/30/76 | 9.88 | 958.36 | 04/04/77 | 15.32 | 952.92 | | 07/21/76 | 10.47 | 957.77 | 06/07/77 | 15.80 | 952.44 | | 08/11/76 | 10.97 | 957.27 | 07/07/77 | 15.73 | 952.51 | | 08/24/76 | 7.95 | 960.29 | 08/10/77 | 16.49 | 951.75 | | 09/13/76 | 7.23 | 961.01 | 09/15/77 | 16.93 | 951.31 | | 09/28/76 | 8.21 | 960.03 | | | | | 11/02/76 | 13.02 | 955.22 | 06/22/78 | 16.48 | 951.76 | | 12/07/76 | 13.80 | 954.44 | 09/20/78 | 16.81 | 951.43 | | Wahpeton Buried Valley Aguifer | | | (10)=248-254 | | | |--------------------------------|------------|-----------|--------------|------------|------------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 11 (10 (60 | 7 22 | 050 57 | 07/06/77 | 20.24 | 027 55 | | 11/18/69 | 7.32 | 959.57 | 07/06/77 | 29.34 | 937.55 | | 06/00/70 | 0.60 | 050 06 | 08/10/77 | 29.51 | 937.38 | | 06/09/70 | 8.63 | 958.26 | 09/15/77 | 28.91 | 937.98 | | 07/20/70 | 8.36 | 958.53 | 12/12/77 | 27.39 | 939.50 | | 08/30/70 | 8.47 | 958.42 | | | | | | | | 03/14/78 | 28.74 | 938.15 | | 08/28/73 | 14.14 | 952.75 | 06/22/78 | 28.78 | 938.11 | | 09/20/73 | 9.80 | 957.09 | 09/21/78 | 30.91 | 935.98 | | 12/18/73 | 8.70 | 958.19 | 12/06/78 | 36.34 | 930.55 | | 06/19/74 | 8.83 | 958.06 | 07/19/79 | 43.64 | 923.25 | | 07/17/74 | 31.25 | 935.64 | 09/20/79 | 42.63 | 924.26 | | 07/18/74 | 34.29 | 932.60 | 11/30/79 | 38.56 | 928.33 | | 07/29/74 | 43.74 | 923.15 | ,, | | | | 08/01/74 | 42.63 | 924.26 | 03/20/80 | 35.75 | 931.14 | | 08/05/74 | 40.62 | 926.27 | 06/18/80 | 39.84 | 927.05 | | 08/09/74 | 31.74 | 935.15 | 09/10/80 | 42.07 | 924.82 | | 08/14/74 | 24.36 | 942.53 | 09/17/80 | 19.90 | 946.99 | | 08/20/74 | 20.88 | 946.01 | 11/18/80 | 43.19 | 923.70 | | 08/27/74 | 18.98 | 947.91 | 11/10/00 | 43.17 | 223.10 | | 09/05/74 | 17.33 | 949.56 | 06/11/81 | 42.98 | 923.91 | | 09/03/74 | 16.24 | 950.65 | 09/03/81 | 60.43 | 906.46 | | 09/13/74 | 16.41 | 950.48 | 10/08/81 | 44.22 | 922.67 | | THE REAL PROPERTY AND ADDRESS. | | 950.48 | 12/01/81 | 40.92 | 925.97 | | 09/17/74 | 16.41 | 951.77 | 12/01/61 | 40.92 | 943.91 | | 09/24/74 | 15.12 | | 07/07/03 | 47 42 | 010 46 | | 10/03/74 | 17.09 | 949.80 | 07/07/82 | 47.43 | 919.46
904.90 | | 10/04/74 | 17.16 | 949.73 | 10/04/82 | 61.99 | | | 10/05/74 | 18.74 | 948.15 | 11/30/82 | 43.90 | 922.99 | | 10/09/74 | 24.17 | 942.72 | 02/40/02 | 40.70 | 000 11 | | 10/16/74 | 40.21 | 926.68 | 03/10/83 | 43.78 | 923.11 | | 10/22/74 | 45.87 | 921.02 | 06/15/83 | 48.32 | 918.57 | | 10/23/74 | 46.58 | 920.31 | 08/24/83 | 49.36 | 917.53 | | 10/30/74 | 39.66 | 927.23 | 11/29/83 | 45.72 | 921.17 | | 11/06/74 | 44.26 | 922.63 | | | | | 11/18/74 | 33.26 | 933.63 | 04/04/84 | 46.72 | 920.17 | | 12/03/74 | 32.02 | 934.87 | 06/14/84 | 46.62 | 920.27 | | | | | 08/30/84 | 52.19 | 914.70 | | 06/03/75 | 17.24 | 949.65 | 11/19/84 | 46.97 | 919.92 | | 06/18/75 | 15.63 | 951.26 | 11/29/84 | 46.97 | 919.92 | | 07/15/75 | 13.26 | 953.63 | | | | | 07/28/75 | 21.46 | 945.43 | 02/28/85 | 49.12 | 917.77 | | 08/25/75 | 28.53 | 938.36 | 06/26/85 | 46.92 | 919.97 | | 09/07/75 | 20.30 | 946.59 | 09/11/85 | 50.34 | 916.55 | | 12/02/75 | 35.47 | 931.42 | 09/25/85 | 50.50 | 916.39 | | | | | 10/03/85 | 49.30 | 917.59 | | 04/14/76 | 13.34 | 953.55 | 10/09/85 | 49.84 | 917.05 | | 06/02/76 | 28.57 | 938.32 | 10/15/85 | 50.32 | 916.57 | | 06/17/76 | 27.07 | 939.82 | 10/24/85 | 49.15 | 917.74 | | 06/30/76 | 27.43 | 939.46 | 11/01/85 | 49.72 | 917.17 | | 07/21/76 | 32.97 | 933.92 | 12/04/85 | 46.76 | 920.13 | | 08/11/76 | 42.80 | 924.09 | - | | | | 08/24/76 | 44.29 | 922.60 | 04/12/86 | 48.60 | 918.29 | | 09/13/76 | 39.74 | 927.15 | 05/23/86 | 47.88 | 919.01 | | 09/28/76 | 39.13 | 927.76 | 07/16/86 | 49.16 | 917.73 | | 11/02/76 | 34.99 | 931.90 | 09/04/86 | 61.33 | 905.56 | | 12/06/76 | 38.56 | 928.33 | 10/28/86 | 51.44 | 915.45 | | | | | 11/04/86 | 66.19 | 900.70 | | 01/04/77 | 37.89 | 929.00 | 11/25/86 | 69.41 | 897.48 | | 04/04/77 | 29.97 | 936.92 | 12/01/86 | 68.12 | 898.77 | | 06/07/77 | 32.64 | 934.25 | | | | | | | | | | | | 133-047-20DDD1 (Cont
Wahpeton Buried Valley Aguif | | (Continued)
Aquifer | | LS Elev (msl, | ft)=966.89 | |--|------------|------------------------|----------|---------------|------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 01/07/87 | 70.72 | 896.17 | 10/28/88 | 53.80 | 913.09 | | 01/28/87 | 69.23 | 897.66 | 12/01/88 | 53.42 | 913.47 | | 05/14/87 | 60.98 | 905.91 | | | | | 07/03/87 | 59.18 | 907.71 | 01/05/89 | 54.81 | 912.08 | | 07/10/87 | 58.87 | 908.02 | 02/16/89 | 53.72 | 913.17 | | 08/04/87 | 57.67 | 909.22 | 03/16/89 | 54.08 | 912.81 | | 09/01/87 | 59.15 | 907.74 | 04/19/89 | 54.34 | 912.55 | | 09/17/87 | 55.39 | 911.50 | 05/16/89 | 62.50 | 904.39 | | 10/01/87 | 57.00 | 909.89 | 06/20/89 | 60.09 | 906.80 | | 11/03/87 | 54.58 | 912.31 | 07/19/89 | 65.67 | 901.22 | | 11/17/87 | 54.89 | 912.00 | 08/15/89 | 64.28 | 902.61 | | 11/25/87 | 53.02 | 913.87 | 10/05/89 | 55.20 | 911.69 | | 12/01/87 | 53.07 | 913.82 | 10/25/89 | 54.20 | 912.69 | | | | | 11/29/89 | 54.10 | 912.79 | | 02/11/88 | 54.18 | 912.71 | 20 | | | | 04/22/88 | 53.08 | 913.81 | 01/02/90 | 52.66 | 914.23 | | 06/23/88 | 62.00 | 904.89 | 03/29/90 | 54.08 | 912.81 | | 07/27/88 | 63.48 | 903.41 | 04/24/90 | 54.87 | 912.02 | | 08/23/88 | 56.95 | 909.94 | 05/22/90 | 54.35 | 912.54 | | 09/29/88 | 55.96 | 910.93 | 06/14/90 | 57.52 | 909.37 | | 133-047-2 | 200002
Shallow Sand A | Naui for | | LS Elev (ms. | (ft.) = 967.5 | |-----------|--------------------------|-----------|----------------------|----------------|------------------| | wantecon | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | Date | water (rt) | (msi, ic) | Date | water (It) | (11151, 10) | | 09/17/74 | 15.78 | 951.72 | 10/08/81 | 21.04 | 946.46 | | 09/24/74 | 15.35 | 952.15 | 12/01/81 | 20.90 | 946.60 | | 10/03/74 | 15.40 | 952.10 | | | | | 10/04/74 | 15.41 | 952.09 | 07/07/82 | 21.55 | 945.95 | | 10/05/74 | 15.44 | 952.06 | 10/04/82 | 21.62 | 945.88 | | 10/09/74 | 15.39 | 952.11 | 11/30/82 | 21.52 | 945.98 | | 10/16/74 | 15.40 | 952.10 | | | | | 10/22/74 | 15.70 | 951.80 | 03/10/83 | 20.98 | 946.52 | | 10/23/74 | 15.62 | 951.88 | 06/15/83 | 21.69 | 945.81 | | 10/30/74 | 15.76 | 951.74 | 08/24/83 | 21.50 | 946.00 | | 11/06/74 | 15.73 | 951.77 | 11/29/83 | 22.28 | 945.22 | | 11/18/74 | 15.80 | 951.70 | | | | | 12/03/74 | 15.92 | 951.58 | 04/04/84 | 21.49 | 946.01 | | | | | 06/14/84 | 21.35 | 946.15 | | 01/22/75 | 15.96 | 951.54 | 08/30/84 | 21.18 | 946.32 | | 02/25/75 | 15.86 | 951.64 | 11/29/84 | 22.18 | 945.32 | | 06/03/75 | 15.35 | 952.15 | | | | | 06/18/75 | 15.14 | 952.36 | 02/28/85 | 21.65 | 945.85 | | 07/15/75 | 14.80 | 952.70 | 06/26/85 | 22.08 | 945.42 | | 07/28/75 | 14.79 | 952.71 | 09/11/85 | 22.28 | 945.22 | | 08/25/75 | 14.82 | 952.68 | 09/25/85 | 22.58 | 944.92 | | 09/07/75 | 14.85 | 952.65 | 10/03/85 | 22.59 | 944.91 | | 12/02/75 | 11.96 | 955.54 | 10/09/85 | 22.66 | 944.84 | | | | | 10/15/85 | 22.60 | 944.90 | | 01/22/76 | 14.71 | 952.79 | 10/24/85 | 22.56 | 944.94 | | 04/14/76 | 14.32 | 953.18 | 11/01/85 | 22.52 | 944.98 | | 06/02/76 | 14.64 | 952.86 | 12/04/85 | 21.93 | 945.57 | | 06/17/76 | 14.80 | 952.70 | | | | | 06/30/76 | 14.99 | 952.51 | 04/12/86 | 21.18 | 946.32 | | 07/21/76 | 15.31 | 952.19 | 05/23/86 | 21.00 | 946.50 | | 08/11/76 | 15.77 | 951.73 | 07/16/86 | 21.08 | 946.42 | | 08/24/76 | 15.86 | 951.64 | 09/04/86 | 20.95 | 946.55 | | 09/13/76 | 16.27 | 951.23 | 10/28/86 | 21.27 | 946.23 | | 09/28/76 | 16.44 | 951.06 | 11/04/86 | 21.30 | 946.20 | | 11/02/76 | 16.84 | 950.66 | 11/25/86 | 21.05 | 946.45 | | 12/06/76 | 16.94 | 950.56 | 12/01/86 | 21.48 | 946.02 | | 01/04/77 | 16.65 | 950.85 | 01/07/87 | 21.46 | 946.04 | | 04/04/77 | 17.34 | 950.16 | 01/28/87 | 21.55 | 945.95 | | 06/07/77 | 18.08 | 949.42 | 03/03/87 | 21.64 | 945.86 | | 07/06/77 | 18.38 | 949.12 | 05/14/87 | 22.75 | 944.75 | | 08/10/77 | 18.56 | 948.94 | 07/03/87 | 23.40 | 944.10 | | 09/15/77 | 18.68 | 948.82 | 07/10/87 | 23.20 | 944.30 | | 12/12/77 | 17.58 | 949.92 | 08/04/87 | 23.76 | 943.74 | | | | | 09/01/87 | 24.14 | 943.36 | | 06/22/78 | 17.14 | 950.36 | 09/17/87 | 23.92 | 943.58 | | 09/21/78 | 17.55 | 949.95 | 10/01/87 | 24.29 | 943.21 | | 12/06/78 | 17.50 | 950.00 | 11/03/87 | 24.63 | 942.87 | | | | | 11/17/87 | 24.60 | 942.90 | | 07/19/79 | 22.22 | 945.28 | 11/25/87 | 24.36 | 943.14 | | 09/20/79 | 18.64 | 948.86 | 12/01/87 | 24.64 | 942.86 | | 11/30/79 | 18.59 | 948.91 | 00 /11 /00 | 24 21 | 042 10 | | 03/20/80 | 18.50 | 949.00 | 02/11/88
04/22/88 | 24.31
24.68 | 943.19
942.82 | | 06/18/80 | 19.30 | 949.00 | 06/23/88 | 25.53 | 942.82 | | 09/10/80 | 19.88 | 947.62 | 07/27/88 | 25.79 | 941.71 | | 11/18/80 | 19.92 | 947.58 | 08/23/88 | 25.98 | 941.71 | | ,,, | | | 09/29/88 | 26.05 | 941.45 | | 06/11/81 | 20.34 | 947.16 | 10/28/88 | 26.18 | 941.32 | | 09/03/81 | 20.94 | 946.56 | 12/01/88 | 26.11 | 941.39 | | | | | | | | | | 0DDD2 | | | LS Elev (ms | | |-----------------------|------------------------|----------------------|----------------------|------------------------|-----------------| | | | Aquifer | | SI | | | Date | Depth to
Water (ft) | (msl, ft) | | Depth to
Water (ft) | (msl, ft) | | | | | | 26.52 | | | 01/05/89 | 25 83 | 941.67 | | 26.59 | | | 02/16/89 | 25.83
25.56 | 941.94 | 11,23,03 | 20.55 | 340.31 | | 03/16/89 | 25.29 | 942.21 | 01/02/90 | 26.14 | 941.36 | | 04/19/89 | | 941.86 | | | | | 05/16/89 | 25.64
25.85 | 941.65 | 04/24/90 | 25.77
25.89 | 941.61 | | 06/20/89 | 26.14 | 941.36 | 05/20/90 | 26.21 | 941.29 | | | 26.39 | | 05/22/90 | 26.21 | | | 08/15/89 | 26.52 | 940.98 | | 26.50 | | | 10/05/89 | 26.52
26.51 | 940.99 | | | | |
133-047-2 | 1BCB | | | LS Elev (ms | | | Wahpeton | | | 7.7 | SI (fi | | | | Depth to | | | Depth to | WL Elev | | | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | | 9.63 | | | | | | 02/26/70 | 9.28 | 957.82 | 08/30/71 | 8.10 | 959.00 | | 122 047 1 | 11003 | | | IC Ploy (mg |) f+_06/ / | | 133-047-2
Wahpeton | | Aguifer | | LS Elev (ms:
SI (fi | | | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | | Water (ft) | (msl, it) | | | | 958.11 | | 5.85 | | | 133-047-2
Wahpeton | | Aguifer | | LS Elev (ms:
SI (f | | | | | | | Depth to | | | | | WL Elev
(msl, ft) | | Water (ft) | (msl, ft) | | | | 956.09 | | 10.07 | | | 133-047-2 | 21CBB2 | | | LS Elev (ms | l,ft)=966.8 | | Wahpeton | Buried Valley | Aguifer | | SI (f | t.) = 248 - 251 | | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 11/18/69 | 8.89 | 957.91 | 02/26/70 | 8.66 | 958.14 | | 133-047-2 | 220001 | | | LS Elev (msl | ft\=956 71 | | | Buried Vallev | Aguifer | | | t.) = 238 - 243 | | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 09/01/87 | 44.60 | 912.11 | 05/16/89 | 48.92 | 907.79 | | 10/01/87 | 42.13 | 914.58 | 06/21/89 | 45.97 | 910.74 | | 11/03/87 | 39.60 | 917.11 | 07/19/89 | 51.83 | 904.88 | | 12/01/87 | 38.52 | 918.19 | 08/15/89 | 50.65 | 906.06 | | | | 048 55 | 10/05/89 | 42.35 | 914.36 | | 02/11/88 | 39.18 | 917.53 | 10/24/89 | 42.18 | 914.53 | | 04/22/88 | 39.72 | 916.99 | 12/01/89 | 39.00 | 917.71 | | 07/27/88 | 49.25 | 907.46 | 02/20/00 | 40.21 | 916.50 | | 08/23/88 | 45.25 | 911.46
914.61 | 03/29/90
04/24/90 | 41.08 | 915.63 | | 10/27/88 | 42.10
39.60 | 917.11 | 05/22/90 | 40.52 | 916.19 | | 12/01/88 | | | 06/14/90 | 45.80 | 910.91 | | 04/19/89 | 40.52 | 916.19 | | | | | 133-047-28DCD3 | LS Elev $(msl, ft) = 957.33$ | |----------------|--| | | The second secon | | Wahpeton | Shallow Sand | Aguifer | | SI | (ft.)=60-65 | |----------|------------------------|-------------------|----------|------------------------|-------------------| | Date | Depth to
Water (ft) | WL Elev (msl, ft) | Date | Depth to
Water (ft) | WL Elev (msl, ft) | | 09/01/87 | 26.62 | 930.71 | 05/16/89 | 19.57 | 937.76 | | 10/01/87 | 24.08 | 933.25 | 06/21/89 | 21.12 | 936.21 | | 11/03/87 | 23.55 | 933.78 | 07/19/89 | 25.65 | 931.68 | | 12/01/87 | 22.76 | 934.57 | 08/15/89 | 24.68 | 932.65 | | | | | 10/05/89 | 23.72 | 933.61 | | 02/11/88 | 22.11 | 935.22 | 10/24/89 | 24.28 | 933.05 | | 04/22/88 | 35.64 | 921.69 | 12/01/89 | 24.86 | 932.47 | | 07/27/88 | 23.29 | 934.04 | | | | | 08/23/88 | 23.22 | 934.11 | 03/29/90 | 23.84 | 933.49 | | 10/27/88 | 23.79 | 933.54 | 04/24/90 | 24.74 | 932.59 | | 12/01/88 | 24.19 | 933.14 | 05/22/90 | 25.70 | 931.63 | | | | | 06/14/90 | 25.29 | 932.04 | | 04/19/89 | 14.86 | 942.47 | | | | | | | | | | | | 133-047-29BA | B 2 | |--------------|------------| |--------------|------------| | LS Elev $(msl,ft)=963.1$ | LS | Elev | (msl.ft | 1 = 963.1 | |--------------------------|----|------|---------|-----------| |--------------------------|----|------|---------|-----------| | 133-047-2
Wahpeton S | Shallow Sand | Amuifer | | LS Elev (ms | l,ft)=963.1
(ft.)=65-68 | |-------------------------|--------------|-----------|------------|-------------|----------------------------| | | Depth to | WL Elev | | Depth to | WL Elev | | Date | Water (ft) | (msl, ft) | Date | Water (ft) | (msl, ft) | | 09/17/74 | 10.83 | 952.27 | 12/06/76 | 12.57 | 950.53 | | 09/24/74 | 10.01 | 953.09 | | | | | 10/03/74 | 10.03 | 953.07 | 01/04/77 | 12.97 | 950.13 | | 10/04/74 | 10.01 | 953.09 | 04/04/77 | 13.48 | 949.62 | | 10/05/74 | 10.06 | 953.04 | 06/07/77 | 14.09 | 949.01 | | 10/09/74 | 10.08 | 953.02 | 07/06/77 | 14.33 | 948.77 | | 10/16/74 | 10.26 | 952.84 | 08/10/77 | 14.54 | 948.56 | | 10/22/74 | 10.65 | 952.45 | . 09/15/77 | 14.72 | 948.38 | | 10/23/74 | 10.68 | 952.42 | 12/12/77 | 14.05 | 949.05 | | 10/30/74 | 10.76 | 952.34 | | | | | 11/06/74 | 10.95 | 952.15 | 06/22/78 | 13.22 | 949.88 | | 11/18/74 | 11.11 | 951.99 | 09/21/78 | 13.80 | 949.30 | | 12/03/74 | 11.37 | 951.73 | 12/06/78 | 14.35 | 948.75 | | 01/22/75 | 11.69 | 951.41 | 09/17/80 | 17.55 | 945.55 | | 02/25/75 | 11.27 | 951.83 | | | | | 06/03/75 | 8.10 | 955.00 | 01/07/87 | 23.10 | 940.00 | | 06/18/75 | 7.66 | 955.44 | 01/28/87 | 23.45 | 939.65 | | 07/15/75 | 6.62 | 956.48 | 09/01/87 | 26.95 | 936.15 | | 07/28/75 | 6.86 | 956.24 | 10/03/87 | 27.36 | 935.74 | | 08/25/75 | 7.66 | 955.44 | 12/01/87 | 27.44 | 935.66 | | 09/07/75 | 7.96 | 955.14 | | | | | 12/03/75 | 8.49 | 954.61 | 04/22/88 | 25.40 | 937.70 | | | | | 06/23/88 | 28.43 | 934.67 | | 01/22/76 | 9.25 | 953.85 | 07/27/88 | 25.80 | 937.30 | | 04/14/76 | 8.52 | 954.58 | 08/23/88 | 28.60 | 934.50 | | 06/02/76 | 8.34 | 954.76 | 09/29/88 | 28.70 | 934.40 | | 06/17/76 | 8.66 | 954.44 | , | | | | 06/30/76 | 9.00 | 954.10 | 03/16/89 | 28.70 | 934.40 | | 07/21/76 | 9.62 | 953.48 | 08/16/89 | 28.95 | 934.15 | | 08/11/76 | 10.28 | 952.82 | | | | | 08/24/76 | 10.66 | 952.44 | 04/25/90 | 28.28 | 934.82 | | 09/13/76 | 11.15 | 951.95 | 05/22/90 | 28.37 | 934.73 | | 09/28/76 | 11.44 | 951.66 | 06/13/90 | 29.69 | 933.41 | | 11/02/76 | 12.05 | 951.05 | | | • | TABLE III. Table of Chemical Analyses. ## Explanation of abbreviations, codes, and units in chemical analysis table: Township, range, section, and quarter(s) identifier Location Depth of the bottom of the lowest screen; 'O-O' indicates a Well Depth surface water sample. Date the sample was gathered in the field Date Sampled Chemical laboratory in which samples were analyzed: Lab ID HD = North Dakota Department of Health MD = Minn-Dak Farmers Cooperative WC = North Dakota State Water Commission Dissolved silica in milligrams per liter SIO2 Dissolved iron in milligrams per liter Fe Dissolved manganese in milligrams per liter Mn Dissolved calcium in milligrams per liter Ca Dissolved magnesium in milligrams per liter Mg Dissolved sodium in milligrams per liter Na-Dissolved potassium in milligrams per liter K Dissolved bicarbonate in milligrams per liter HCO3 Dissolved carbonate in milligrams per liter CO₃ Dissolved sulfate in milligrams per liter **SO4** Dissolved chloride in milligrams per liter C1 Dissolved fluoride in milligrams per liter F Dissolved nitrate in milligrams per liter NO₃ Dissolved boron in milligrams per liter B Total dissolved solids (residue) in milligrams per liter TDS Hardness: As calcium carbonate (CaCO3) hardness in milligrams per liter as CaCO3 As noncarbonate hardness in milligrams per liter as NCH Percent sodium of total cations (milliequivalents per liter) % Na Sodium adsorption ratio SAR Field measurement of specific conductance in micromhos per Spec Cond centimeter corrected to 25 degrees centigrade Field measurement of water temperature in degrees centigrade Temp Field measurement of pH Hg | | Screened | | | ← | | · · · · · · · · · · · · · · · · · · · | | | | ······································ | —(millig | grams | per liter |)—— | | - | 8 | | → l | | | Spec | | | |--|-------------------------------|--|----------------------|-----------------------------|--------------------------------------|---------------------------------------|---------------------------------|------------------------------|--------------------------------|--|---------------------------------|-------------------|---------------------------------|--------------------------------|---|--------------------------------------|-----------------------------------|----------------------------------|----------------------------|----------------------------
---------------------------------|-----------------------------------|----------------------------|------| | Location | Interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | к | HCO3 | CO3 | so | CI | F NO | 3 В | TDS | Hardnes
CaCO ₃ | ss as
NCH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) | рН | | 133-047-06CCA
133-047-07ADD
133-047-07ADD
133-047-16CAD
133-047-16CBA | 318-324
318-324
107-110 | 09/19/69
06/05/70
06/19/74
08/25/69
08/00/69 | WC
WC | 10
11
9.7
25
27 | 0.03
0
0.49
0.24
1.2 | 0.01
0.04
0.06
0.06
0.15 | 32
23
17
59
179 | 9.7
6.9
7.2
11 | 208
221
210
89
112 | 14
12
13
9.6
10 | 452
452
550
324
397 | 0
12
0
0 | 152
142
61
106
663 | 41
37
29
21
17 | 3.2 2.5
2.5 1
1.1 2.5
0.3 1.3
0.5 1 | 1
1.2
6.4
0.56
0.45 | 696
693
628
483
1280 | 120
86
72
191
765 | 0
0
0
0
439 | 77
83
84
49
24 | 8.3
10
11
2.8
1.8 | 1100
960
1140
790 | 8.9
12
10.6
8.9 | | | 133-047-16CCD1
133-047-16CCD2
133-047-16CDA
133-047-16CDB
133-047-16CDC | 0-0
37-40
149-155 | 08/12/69
08/12/69
08/22/69
08/26/69
09/04/69 | WC | 14
15
29
36
5.4 | 1.1
0.44
0.72
0.44
1.6 | 0.01
0.01
0.11
0.05
0.01 | 41
54
99
70
49 | 25
21
24
24
25 | 8.6
18
111
83
11 | 3.6
4.5
7.6
14
3.9 | 257
176
363
420
259 | 0
0
0
0 | 14
114
267
103
32 | 2.2
3.5
29
24
3 | 0.2 1
0.3 2.5
0.5 0
0.7 0
2.5 | 0.04
0.04
0.71
0.64 | 238
320
748
563
261 | 206
220
348
272
226 | 0
76
50
0
14 | 8
15
40
38
9 | 0.3
0.5
2.6
2.2
0.3 | 1120
950 | 28.9
26.7
9.4
9.4 | | | 133-047-17ADD
133-047-17CC1
133-047-17CC1
133-047-17CC1
133-047-17CC1 | 118-121
118-121
118-121 | 08/21/69
06/04/70
06/19/74
12/02/75
01/21/76 | WC
WC | 32
31
22
21 | 0.1
0
0.76
0.06 | 0.06
0.17
0.16
0.26 | 78
85
78
77 | 22
26
33
36 | 92
68
67
67 | 10
5.9
6.1
7.2 | 440
490
490
490
480 | 0
0
0
0 | 120
73
65
66 | 20
4
17
16 | 0.9 0
0.5 0
0.6 1
0.5 1.5 | 0.56
0.37
0.34
0.96 | 593
535
532
534 | 284
320
330
340 | 0
0
0 | 40
31
30
29 | 2.4
1.7
1.6
1.6 | 880
760
960 | 8.9
8.9
12 | | | 133-047-17CC1
133-047-17CC1
133-047-17CC1
133-047-17CC1
133-047-17CC1 | 118-121
118-121
118-121 | 09/18/80
02/16/84
04/09/86
03/23/87
04/21/88 | WC
WC | 27
28
34
27 | 0.31
1.06
0.78
0.49
0.48 | 0.13
0.05
0.14
0.15
0.1 | 75
76
77
74
76 | 32
29.5
34
33
32 | 66
63.5
67
70
64 | 5
6.3
7.2
7.8
7.1 | 330
485
467
481
472 | 0
0
0 | 61
67
69
64
70 | 20
15.9
17
17
17 | 0.5 1
0.5 1
0.5 1
0.5 5.6 | 0.35
0.32
0.29 | 451
498
532
539
533 | 320
311
330
320
320 | 49
0
0
0 | 31
31
30
32
30 | 1.6
1.6
1.7
1.6 | 930
925
848
840 | 9
6.5
9 | | | 133-047-17CCC1
133-047-17CCC1
133-047-17CCC2
133-047-17CCC2
133-047-17CCC2 | 118-121
48-51
48-51 | 06/29/89
04/25/90
07/17/79
02/16/84
04/09/86 | WC
WC
HD | 22
27
27
17 | 0.02
0.11
0.51
10.2
0.02 | 0.12
0.12
0.1
0.12
0.02 | 64
79
80
32.5
32 | 33
33
32
29
37 | 66
69
69
73 | 7.6
7.4
6.2
5.2
5.3 | 446
481
488
402
419 | 0 | 49
68
58
11
13 | 17
17
14
22.6
25 | 0.4 2.8
0.5 5.2
0.5 1
0.3
0.2 6.7 | 0.37
0.38
0.27 | 482
541
529
367
416 | 300
330
330
201
230 | 0 0 0 | 32
30
31
43
40 | 1.7
1.6
1.6
2.1
2.1 | 852
895
900 | 13
9
10 | 7.53 | | 133-047-17CCC2
133-047-17CCC2
133-047-17DDD
133-047-17DDD
133-047-17DDD | 48-51
60-80
60-80 | 04/21/88
04/25/90
09/16/64
09/02/69
06/13/78 | WC
WC
WC | 12
13
24
28
24 | 3.3
0.04
0.31
1.2
0.79 | 0.08
0.04
0.1
0.3 | 38
35
128
126
99 | 35
36
63
45
37 | 73
68
9.6
59
71 | 6.5
5.8
7.1
5.7
5.7 | 414
418
423
438
529 | 0
0
0
0 | 65
16
246
268
98 | 29
26
6
10
16 | 0.3 1.3
0.5 2
0.2 2.5
0.6 1 | 0.31
0.36
0
0.15
0.34 | 467
408
694
762
615 | 240
240
580
500
400 | 0
0
234
141
0 | 39
38
3
20
28 | 2.1
1.9
0.2
1.1
1.5 | 820
765
1020
975 | 9
11
9.4
8.5 | | | 133-047-17DDD
133-047-18ABC
133-047-18ADA
133-047-18ADA
133-047-18ADA | 219-225
219-225 | 07/18/79
09/17/74
09/04/69
06/19/74
08/24/83 | WC
WC
WC | 29
19
29
20
28 | 0.43
0.55
2.2
0.2
0.06 | 0.12
0.2
0.18
0.16
0.15 | 93
110
124
110
120 | 46
47
35
47
45 | 75
63
52
46
48 | 5.6
7.1
6.9
6.6
8.4 | 573
480
477
470
455 | 0
0
0
0 | 80
200
186
190
180 | 25
17
8
10
9.1 | 0.5 1
0.4 1
0.3 1
0.5 1
0.4 0.5 | 0.33
0.35
0.11
6.2
0.28 | 638
702
680
670
664 | 420
470
454
470
480 | 0
76
63
85
110 | 28
22
20
17
17 | 1.6
1.3
1.1
0.9 | 1075
1060
1220
1060 | 9.5
9.4
9 | 7.78 | | 133-047-18ADA
133-047-19DAA
133-047-20AACCB1
133-047-20AACCB1
133-047-20AACCB1 | 46-49
268-273
268-273 | 05/12/87
09/02/69
09/05/85
09/12/85
04/09/86 | WC
WC
WC
HD | 35
28
25
23 | 0.61
0.82
0.19
0.28
0.44 | 0.16
0.3
0.16
0.25
0.14 | 110
126
110
110
116 | 45
35
44
44
42.6 | 51
81
54
51
54.4 | 7.5
7.1
8.1
8.1
7.1 | 463
472
450
460
486 | 0
0
0 | 180
239
190
150
180 | 10
13
9.1
8.9
10.9 | 0.5 1
0.5 1
0.4 1
0.4 1 | 0.28
0.22
0.45
0.44
0.45 | 669
765
664
624
651 | 460
460
460
460
467 | 80
73
87
79 | 19
27
20
19
20 | 1.6
1.1
1 | 1180
1010
790 | 9.4
11
10 | | | 133-047-20AACCB1
133-047-20AACCB1
133-047-20AACCB1
133-047-20AACCB1
133-047-20AACCB2 | 268-273
268-273
268-273 | 04/09/86
04/20/88
06/28/89
04/25/90
09/05/85 | WC
WC
WC
WC | 29
29
27
26
27 | 0.54
1.1
1.2
0.3
0.22 | 0.18
0.14
0.15
0.12
0.14 | 110
110
110
110
71 | 44
43
44
45
31 | 52
52
50
51
68 | 7.5
7.9
7.5
7.6
7.3 | 462
466
458
481
468 | 0 | 180
180
190
170
86 | 11
10
11
14
16 | 0.4 1
0.5 1
0.4 5.4
0.5 1.8
0.5 1 | 0.26
0.28
0.33
0.35
0.56 | 664
665
673
664
540 | 460
450
460
460
300 | 77
70
80
66
0 | 20
20
19
19
32 | 1.1
1.1
1
1 | 781
970
1079
1024
815 | 7
8
10
10 | | | 133-047-20AACCB2
133-047-20AACCB2
133-047-20AACCB2
133-047-20AACCB2
133-047-20AACCB2 | 113-118
113-118
113-118 | 09/12/85
04/09/86
04/09/86
04/20/88
06/28/89 | | 26
31
31
28 | 0.16
0.21
0.69
0.57
0.03 | 0.13
0.17
0.21
0.15
0.14 | 72
76.2
72
71
69 | 31
30.8
32
31
31 | 66
71.4
67
68
66 | 7.2
5.7
6.2
6.5
6.2 | 469
477
452
465
447 | 0
0
0 | 68
64
68
68 | 15
16.1
17
16
16 | 0.5 1
0.4
0.5 1
0.5 1
0.4 7.1 | 0.55
0.53
0.33
0.31
0.38 | 519
499
519
523
493 | 310
317
310
300
300 | 0 0 0 | 31
33
31
32
32 | 1.6
1.7
1.7
1.7 | 670
738
828
857 | 9
7
8
10 | | | 133-047-20AACCB2
133-047-20AACCB3
133-047-20AACCB3
133-047-20AACCB3
133-047-20AACCB3 | 42-57
42-57
42-57 | 04/25/90
09/05/85
09/12/85
04/09/86
04/09/86 | WC
WC | 28
26
24 | 0.03
0.01
0.13
0.81
1.2 | 0.1
0.19
0.15
0.3
0.34 | 69
91
93
118
110 | 32
71
70
71.9
68 | 71
20
19
15.1
15 | 7
4.1
5.2
3.5
4.2 | 465
426
415
411
404 | 0
0
0 | 61
200
210
258
260 | 18
5.5
5.8
4.9
4.2 | 0.5 7.1
0.5 1
0.4 1
0.3 0.5
0.3 1 | 0.4
0.17
0.16
0.29
0.09 | 523
629
633
674
696 | 300
520
520
590
550 | 0
170
180
220 | 3 3
8
7
5
5 | 1.8
0.4
0.4
0.3 | 1626
960
734 | 10
12
9 | | | 133-047-20AACCB3
133-047-20AACCB3
133-047-20AACCB3
133-047-20AAD1
133-047-20AAD1 | 42-57
42-57
195-200 | 04/10/86
06/28/89
04/25/90
09/06/85
09/11/85 | WC
WC
WC | 30
26
25
25
25 | 0.26
0.21
1
0.11
0.32 | 0.35
0.52
0.73
0.09
0.11 | 110
160
190
79
79 | 69
110
140
32
33 | 17
18
17
84
81 | 3.8
5.4
5.2
9.9
9.9 | 398
471
455
443
442 | 0
0
0
0 | 260
520
660
130
160 | 5.2
8
19
17 | 0.3 1
0.3 1
0.3 1.1
0.6 1
0.5 1 | 0.07
0.12
0.12
0.65
0.64 | 694
1080
1270
599
625 | 560
850
1100
330
330 | 230
470
680
0 | 6
4
3
3 5
3 4 | 0.3
0.3
0.2
2 | 1515
846
910
940 | 10
10
11
9 | | | | Screened | Date | Lab | I | | 30 | | | | | —(millié | grams | per liter |) | | | | | | > | | | Spec | | |
---|-------------------------------|--|----------------------------|----------------------------|--------------------------------------|--------------------------------------|----------------------------------|---------------------------------|------------------------------|---------------------------------|-----------------------------------|------------------|-----------------------------------|---------------------------------|---------------------------------|-----------------------------|--------------------------------------|--------------------------------------|-----------------------------------|---------------------------------|----------------------------|---------------------------------|-----------------------------------|-------------------------|----| | Location | (ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | K | нсоз | ∞₃ | SO4 | CI | F | NO ₃ | В | TDS | Hardnes
CaCO ₃ | s as
NCH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) | рΗ | | 133-047-20AAD1
133-047-20AAD1
133-047-20AAD1
133-047-20AAD1
133-047-20AAD2 | 195-200
195-200
195-200 | 04/09/86
04/20/88
06/28/89
04/25/90
09/06/85 | MC
MC
MC | 28
28
26
27
28 | 0.74
0.81
0.84
0.17
0.02 | 0.14
0.09
0.09
0.09
0.12 | 79
76
78
78
76 | 32
32
32
33
32 | 80
81
81
82
75 | 8.7
9.6
9.1
9.3
8.8 | 430
442
432
443
438 | 0
0
0
0 | 130
130
140
130
110 | 20
20
21
22
17 | 0.6
0.6
0.6
0.6 | 0
1
4
4.2 | 0.41
0.37
0.48
0.52
0.6 | 592
597
606
605
565 | 330
320
330
330
320 | 0
0
0
0 | 34
35
34
34
33 | 1.9
2
1.9
2
1.8 | 815
890
1150
955
850 | 9
9
10
10 | | | 133-047-20AAD2
133-047-20AAD2
133-047-20AAD2
133-047-20AAD2
133-047-20AAD2 | 129-134
129-134
129-134 | 09/11/85
04/09/86
04/20/88
06/28/89
04/25/90 | MC
MC
MC
MC | 28
29
31
29
29 | 0.73
0.49
1
0.56
0.15 | 0.1
0.42
0.14
0.14 | 73
74
73
73
74 | 32
33
33
32
33 | 73
73
74
72
73 | 8.3
7.3
7.7
7.4
7.5 | 436
426
432
409
429 | 0
0
0
0 | 100
110
110
95
110 | 17
19
18
18
20 | 0.4
0.5
0.5
0.4
0.5 | 1
1
7.7
6.4 | 0.59
0.36
0.29
0.4
0.44 | 549
558
563
537
565 | 310
320
320
310
320 | 0
0
0 | 33
33
33
33 | 1.8
1.8
1.8
1.8 | 835
830
865
942
902 | 9
9
9
10
10 | | | 133-047-20AAD3
133-047-20AAD3
133-047-20AAD3
133-047-20AAD3
133-047-20AAD3 | 54-59
54-59
54-59 | 09/11/85
04/09/86
04/20/88
06/28/89
04/25/90 | MC
MC
MC | 26
32
28
27
28 | 0.1
1
1.7
1.9
0.95 | 0.3
0.35
0.29
0.31
0.33 | 190
190
170
170
180 | 110
110
110
110
150 | 36
32
38
33
36 | 6.2
4.7
6.2
5.6
5.6 | 409
426
421
422
525 | 0
0
0
0 | 650
640
600
560
550 | 8.9
6.1
13
38 | 0.4
0.4
0.4
0.3 | 1
0.7
1.7
1.8 | 0.2
0.11
0.09
0.18
0.18 | 1230
1230
1170
1130
1250 | 930
930
880
880
1100 | 590
580
530
530
640 | 8
1
9
8
7 | 0.5
0.5
0.6
0.5
0.5 | 1610
1525
1651
1666 | 9
10
10 | | | 133-047-20ABAC1
133-047-20ABAC1
133-047-20ABAC1
133-047-20ABAC1
133-047-20ABAC1 | 265-270
265-270
265-270 | 04/09/86
04/09/86
03/24/87
03/24/87
04/19/88 | MC
MC
MC
HD | 29
28
31
27 | 0.18
0.49
0.03
0.21
0.97 | 0.14
0.18
0.06
0.14
0.14 | 120
110
120
120
110 | 45.6
45
44
45
45 | 58.9
58
55
60
57 | 7.4
7.9
8.6
8.6
8.7 | 489
459
462
480
478 | 0
0
0 | 193
190
200
200
200 | 9.5
13
11
11 | 0.5
0.5
0.5
0.5 | 0.1
1
1
1 | 0.5
0.37 | 675
681
696
713
697 | 488
460
480
480
460 | 84
100
91
68 | 21
21
20
21
21 | 1.2
1.2
1.1
1.2
1.2 | 960
887
908
1012 | 9
7.7
7.8
10 | | | 133-047-20ABAC1
133-047-20ABAC1
133-047-20ABAC1
133-047-20ABAC2
133-047-20ABAC2 | 265-270
265-270
118-123 | 02/26/89
06/28/89
04/25/90
04/09/86
04/09/86 | MD
WC
HD
WC | 30
27
33 | 0.5
0.86
0.15
0.2
0.86 | 0.15
0.15
0.19
0.22 | 126
110
110
99
95 | 45
44
46
37.8
38 | 64
56
53
55.5
54 | 9.5
8.6
8.5
6.7
7.1 | 514
470
476
464
439 | 0
0
0 | 196
200
200
132
140 | 8.8
11
12
7.7
11 | 0
0.5
0.5
0.4
0.4 | 0
0.5
4.7
0.1 | 0.4
0.44
0.46
0.4 | 694
696
568
596 | 460
460
403
390 | 71
74
34 | 21
20
23
23 | 1.1
1.1
1.2
1.2 | 1157
1065
860 | 10
10 | | | 133-047-20ABAC2
133-047-20ABAC2
133-047-20ABAC2
133-047-20ABAC2
133-047-20ABAC2 | 118-123
118-123
118-123 | 06/30/86
09/18/86
09/18/86
11/21/86
12/19/86 | WC
WC
MD
MD
MD | 29
30 | 0.37
0.03
1.3
0 | 0.23 | 95
97
108.2
101
102 | 39
38
39
39 | 55
54
56.8
55
56 | 7.8
7.2
10.2
8
7.9 | 442
452
388
425
451 | 0 | 140
170
161.2
166
150 | 8.9
7.8
7.4
7
8.6 | 0.4 | 0.2 | 0.51
0.46 | 594
629 | 400
400 | 36
28 | 23
22 | 1.2 | 920
940 | 11
10 | | | 133-047-20ABAC2
133-047-20ABAC2
133-047-20ABAC2
133-047-20ABAC2
133-047-20ABAC2 | 118-123
118-123
118-123 | 01/30/87
02/26/87
03/24/87
03/24/87
04/19/88 | MD
MC
MD
WC | 35
30 | 0.02
0.1
0.66 | 0.2 | 106
104
99
109 | 39
42
40
42
37 | 55
58
55
62
52 | 7.3
7.5
8
7.9
7.9 | 451
450
458
459
457 | 0
0 | 139
137
170
155
140 | 7.1
7.1
13
7.4
8.5 | 0.4 | 1 | 0.24 | 648
594 | 410
380 | 3 6
5 | 22 | 1.2 | 810
875 | 7.7 | | | 133-047-20ABAC2
133-047-20ABAC2
133-047-20ABAC4
133-047-20ABAC4
133-047-20ABAC4 | 118-123
38-48
38-48 | 06/28/89
04/25/90
04/09/86
04/09/86
07/01/86 | WC
HD
WC
WC | 28
29
30
26 | 0.65
0.11
0.04
0.7
1.1 | 0.15
0.16
0.99
1
0.85 | 94
88
262
250
230 | 37
36
98.6
95
88 | 56
51
12
14
12 | 7.5
7.4
4.3
4.3 | 437
418
404
387
376 | 0
0
0 | 140
140
722
660
630 | 9.8
9.3
4.8
6.1
4.1 | 0.3
0.4
0.3
0.3 | 5.9
5.3
1
3.9 | 0.37
0.39
0.22
0.09
0.08 | 595
573
1300
1250
1190 | 390
370
1060
1000
940 | 29
25
700
630 | 24
23
2
3
3 | 1.2
1.2
0.2
0.2
0.2 | 988
880
1550 | 10
10 | | | 133-047-20ABAC4
133-047-20ABAC4
133-047-20ABAC4
133-047-20ABB
133-047-20ABB | 38-48
38-48
178-184 | 09/18/86
09/18/86
10/23/86
09/03/69
09/20/73 | WC
MD
MD
WC
WC | 31
28
17 | 2.2
2.9
6
0.46
0.77 | 0.7 | 270
247.1
237
128
79 | 110
98.2
107
33
22 | 16.3
17
52
20 | 5.2
7.6
5
6.7
5.2 | 384
459.2
255
478
243 | 0 0 | 830
824.5
840
188
130 | 7.4
2.5
2.6
7.3 | 0.2
0.4
0.5 | 1 2.5 | 0.15
0.04
0.34 | 1460
680
402 | 1100
456
290 | 810
64
91 | 3
20
13 | 0.2
1.1
0.5 | 1825 | 10
9.4 | | | 133-047-20ABB
133-047-20ABB
133-047-20ABB
133-047-20ABB
133-047-20ABB | 178-184
178-184
178-184 | 06/19/74
09/05/75
01/22/76
09/18/80
02/16/84 | WC
WC
WC
HD | 14
12
15
20 | 1.8
0.12
0.04
0.25
1.79 | 0.2
0.65
0.02
0.7
0.73 | 140
120
120
120
120 | 34
41
41
32
23.5 | 31
47
54
60
49.5 | 8.6
8.8
7.4
16
23.2 | 430
473
459
478
548 | 0
0
0 | 210
190
180
170
122 | 8.2
8.2
7.7
13
12.3 | 0.4
0.5
0.6
0.2 | 1
4.9
18
0.4 | 3.8
0.16
0.48
0.1 | 665
662
657
685
621 | 490
470
470
430
398 | 140
82
94
38 | 12
17
20
22
21 | 31
0.9
1.1
1.3 | 1205
1120 | 9 | | | 133-047-20ABB
133-047-20ABB
133-047-20ABB
133-047-20ABB
133-047-20ABB | 178-184
178-184
178-184 | 10/31/85
04/09/86
04/21/88
06/29/89
04/25/90 | WC
WC
WC
WC | 21
14
17
17
18 | 0.17
0.04
0.12
0.08
0.07 | 0.54
0.3
0.23
0.28
0.28 | 120
110
92
99
100 | 30
27
30
32
37 | 66
69
58
59 | 21
23
20
17
14 | 511
577
626
589
609 | 0
0
0
0 | 150
53
14
9.1
49 | 12
11
8
9.5 | 0.3
0.2
0.2
0.2
0.2 | 1
1
1
1.4
20 | 0.48
0.46
0.35
0.42
0.4 | 670
593
549
535
605 | 420
390
350
380
400 | 4
0
0
0 | 24
27
25
24
22 | 1.4
1.5
1.3
1.3 | 960
980
930
1020
1020 | 8
9
8
13
9 | | | 133-047-20ABBA1
133-047-20ABBA1
133-047-20ABBA1
133-047-20ABBA1
133-047-20ABBA1 | 266-271
266-271
266-271 | 04/09/86
04/09/86
06/30/86
03/24/87
04/19/88 | HD
WC
WC
WC | 31
27
31
26 | 0.08
0.62
0.46
0.03
0.94 | 0.15
0.18
0.18
0.09
0.14 | 116
110
110
110
110 | 42.5
44
44
42
43 | 61
60
62
60
58 | 7.1
8
8.6
8.8
8.9 | 486
466
460
465
474 | 0
0
0 |
192
190
190
190 | 10.6
13
12
12
9.1 | 0.4
0.5
0.4
0.5
0.5 | 0.1
0
0.3
1
0.3 | 0.46
0.45
0.53 | 668
688
682
684
680 | 464
460
460
450 | 74
79
66
63 | 22
22
22
22
21 | 1.2
1.3
1.2
1.2 | 946
1050
908
1042 | 9
10
7.9
10 | | | | | | | | | | | | | | | (millio | | nor litor | | | | | | -10- | >∣ | | | | | | |---|--|--|--|----------------------|----------------------|----------------------------------|-------------------------------------|-----------------------------------|---------------------------------|--------------------------------|--------------------------------------|-----------------------------------|-----------------|--------------------------------------|---------------------------------|---------------------------------|-------------------------|-------------------------------------|-------------------------------------|-------------------------------------|---------------------------|------------------------|--------------------------|------------------------|-----------------|---| | | Screened
Interval | Date | | Lab | 0:0 | F. | | ~ | Ma | Na. | K | —(mmy
н∞ _з | 00 ₃ | per liter
so, | CI | F | NO ₃ | В | TDS | Hardnes
CaCO ₃ | | %
Na | SAR | Spec
Cond
(µmho) | Temp
(∞C) | F | | Location
133-047-20ABBA1 | 266-271 | Same
06/3 | | WC WC | 25 | 0.72 | Mn
0.12 | 110 | Mg
4 3 | 60 | 8.5 | 464 | 0 | 190 | 11 | | 5.1 | 0.36 | 683 | 450 | 72
66 | 22
21 | 1.2 | 1114
1158 | 11
9 | | | 133-047-20ABBA1
133-047-20ABBA2
133-047-20ABBA2 | 266-271
118-123
118-123 | 04/04/04/04/04/04/04/04/04/04/04/04/04/0 | 24/90
09/86
09/86 | WC
HD
WC | 19
32 | 0.51
0.16
1.2 | 0.14
0.15
0.19
0.21 | 110
104
99
97 | 45
39.6
39
40 | 58
53.7
54
54 | 8.5
5.9
6.4
7.3 | 480
462
441
441 | 0 | 200
144
150
140 | 7.5
9.9
9.7 | 0.4 | 0.1
6
0.3 | 0.3
0.44
0.35
0.45 | 690
582
615
597 | 460
423
410
410 | 4 6
4 5 | 22
22
22 | 1.1
1.2
1.2 | 860
950 | 9
11 | | | 133-047-20ABBA2
133-047-20ABBA2
133-047-20ABBA2
133-047-20ABBA2
133-047-20ABBA2 | 118-123
118-123
118-123
118-123
118-123
119-123 | 09/
09/
11/
12/ | 18/86
18/86
21/86
19/86 | MD | 3 0
3 2 | 0.65
0.82
2.6
2.6 | 0.2 | 99 | 39
39.6
39
41
40 | 52
54.8
51
52
52 | 7
9.4
7.2
7.8
7.1 | 456
421.5
425
451
457 | 0 | 140
165.5
168
146
145 | 8.1
7.2
7
7.1
6.9 | 0.4 | 1 | 0.47 | 605 | 410 | .34 | 21 | 1.1 | 950 | 10 | | | 133-047-20ABBA2
133-047-20ABBA2
133-047-20ABBA2
133-047-20ABBA2
133-047-20ABBA2 | 118-123
118-123
118-123
118-123
118-123 | 02/
03/
03/
04/ | 26/87
24/87
24/87
19/88 | MD
WC
MD
WC | 35
30
28 | 0
0.03
0.2
0.67
0.66 | 0.18
0.18
0.14 | 108
100
111
97 | 43
39
40
39
38 | 58
50
49
52
52 | 7.5
7.3
7.9
7.4
7.3 | 459
456
448
457
445 | 0 | 148
150
144
150
150 | 6.9
9.1
6.8
6.6 | 0.4
0.4
0.3 | 1
5.4 | 0.22
0.32 | 617
609
608 | 410
400
400 | 37
28
34 | 21
22
22 | 1.1
1.1
1.1 | 759
900
1020 | 7.7
11
11 | | | 133-047-20ABBA2
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3 | 118-123
43-53
43-53
43-53
43-53 | 04/
04/
04/
07/ | 24/90
09/86
09/86
01/86 | WC
HD
WC
WC | 23
30
28
32 | 0.08
3.28
3.7
7.9 | 0.16
0.77
0.84
1.3
0.83 | 98
330
320
300
320 | 39
172
170
160
170 | 51
29.2
30
23
22 | 7.3
6.9
6.5
6.4
6.3 | 442
544
525
586
552 | 0
0
0 | 150
1080
1100
930
1100 | 9.5
21.4
18
17
18 | 0.4
0.3
0.3
0.2
0.2 | 0.4
1
1 | 0.27
0.36
0.2
0.09
0.25 | 597
1910
1940
1760
1950 | 410
1530
1500
1400
1500 | 43
1100
930
1000 | 21
4
4
3
3 | 1.1
0.3
0.3
0.3 | 960
2250
2375 | 11
13
10 | | | 133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3 | 43-53
43-53
43-53
43-53
43-53 | 09/
10/
10/
11/ | 18/86
11/86
23/86
21/86 | MD
WC
MD
MD | 32 | 11.7
6.8
3
3.2
0.1 | 1 | 308.1
360
556
500
463 | 187
180
301
202
197 | 26.4
25
61
267
357 | | 456.9
784
400
484
477 | 0 | 1293
910
2377
2602
2055 | 15.2
23
201
236
248 | 0.2 | 1 | 0.22 | 1930 | 1600 | 1000 | 3 | 0.3 | 2400 | | | | 133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3 | 43-53
43-53
43-53 | 02/ | 28/87
26/87
24/87
24/87
23/87 | MD
WC
MD | 37
28 | 2.8
2.7
2.6
2.7
3.4 | 2.7
1.8 | 443
403
420
383
340 | 182
168
160
157
140 | 90 | 27.1
18.8
18
17.4 | 535
761
815
801
753 | 0 | 2074
1349
1200
1190
820 | 240
76
35
31
26 | 0.2 | 1 | 0.26 | 2370
1780 | 1700
1400 | 1000 | 10
5 | 0.9 | 2510
2350 | 11.1 | | | 133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3 | 43-53
43-53
43-53 | 10/
10/
10/ | 09/87
06/87
12/87
19/87
22/87 | MD
WC
WC | 28
27 | 3.3
8.9
3.8
4.3
25.7 | 1.6
1.7 | 473
475
360
330
396 | 168
187
180
170
182 | 49
17
19
21 | 8.1 | 743
827
699
706
792 | 0 | 948
983
960
770
790 | 19
31
29
30
35 | 0.3 | 0.7 | 0.17
0.15 | 1940
1710 | 1600
1500 | 1100
940 | 2 3 | 0.2 | 2490
1874 | 11
10 | | | 133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3 | 43-53
43-53
43-53 | 3 11/
3 12/
3 12/ | 05/87
20/87
04/87
18/87 | MD
MD
MD | | 7.4
2.3
0.58
0.6
1.5 | | 726
735
712
711
478 | 276
283
247
236
186 | 222
351 | 14.9
21.6
26.7
33.2
22 | 763
756
763
813
856 | | 1831
2205
1988
2020
1432 | 145
205
234
228
98 | | | | | | | | | | | | | 133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3 | 43-53
43-53
43-53
43-53 | 3 01/
3 02/
3 03/
3 03/ | 29/88
17/88
10/88
30/88
19/88 | MD
MD
MD
MD | | 2.7
0
0.5
1.6
0.7 | | 418
368
423
459
471 | 165
179
194
194
185 | 127
93
61 | 19.2
18.5
17.4
14.9
14.5 | 752
739
830
821
751 | | 1155
1108
1185
1203
1166 | 50
51
46
45
50 | 0 | 0 | | | | | | | | | | | 133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3 | 43-5:
43-5:
43-5:
43-5: | 3 04/
3 05/
3 06/
3 07/ | /19/88
/24/88
/30/88
/29/88
/08/88 | WC
MD
MD
MD | 26 | 1.1
1.2
1.9
1.4
1.8 | 1.9 | 390
376
300
304
300 | 180
176
170
176
170 | 62
70 | 14.6
15.2
15.9 | 793
779
789
897
855 | 0 | 1100
1026
947
925
988 | 46
42
39
31
37 | 0.2
0
0
0 | 0.2
0
0
0
0 | 0.35 | 2210 | 1700 | 1100 | 7 | 0.7 | 2775 | 11 | | | 133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3 | 43-5:
43-5:
43-5:
43-5: | 3 08/
3 08/
3 08/
3 09/ | /15/88
/22/88
/29/88
/06/88
/06/88 | MD
MD
MD
MD | | 2.6
2
1.9
2 | | 298
305
301
305
331 | 174
173
159
164
152 | 8 6
8 3
8 9 | 16.4
16.3
16.4
17.3
17.3 | 860
859
858
845
742 | | 989
967
984
1082
1000 | 38
37
20
48
41 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | 133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3 | 43-5
43-5
43-5
43-5 | 3 11,
3 12,
3 01,
3 02, | /08/88
/14/88
/26/89
/26/89 | MD
MD
MD
MD | | 0.7
2.4
0
1.1
1.1 | | 330
348
319
345
343 | 168
152
161 | 6 8
5 4
8 0 | 16.9
17.3
14.9
16.4
13.6 | 846 | | 951
965
857
934
1040 | 41
49
47
40
31 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | | Commend | | | I ←— | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | —(millig | grams | per liter |) | | | | | | →1 | | | Sana | | | |---|-------------------------------|--|----------------|----------------------|--------------------------------------|-------------------------------------|----------------------------------|---------------------------------|--|--------------------------------------|-----------------------------------|-------------|--------------------------------------|-----------------------------------|---------------------------------|--------------------|-----------------------------|----------------------------------|----------------------------------|---------------|----------------------------|---------------------------------|---------------------------|---------------------|----| | Location | Screened
Interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | ĸ | нсо3 | ∞_3 | SO, | CI | F | NO
₃ | В | TDS | Hardne
CaCO ₃ | SS 2S
NCH | %
Na | SAR | Spec
Cond
(µmho) | Temp
(∞C) | рН | | 133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3 | 43-53
43-53 | 04/27/89
06/05/89
06/28/89
06/28/89
08/01/89 | MD
MD
WC | 25 | 2.1
2.8
1.1
1.2 | 1.8 | 375
385
368
340
332 | 186
184
177
180
158 | 34 | 12.2
10.8
10.8
11
9.5 | 746
719
705
670
533 | 0 | 1155
1134
1214
960
1005 | 38
24
18
25 | 0
0
0
0.2 | 0
0
0
1 | 0.29 | 1900 | 1600 | 1000 | 4 | 0.3 | 2800 | 11 | | | 133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3 | 43-53
43-53 | 09/07/89
10/11/89
11/07/89
12/27/89
02/06/90 | MD
MD | | 2.7
2.1
2.3
2.8
2.6 | | 336
349
331
353
336 | 152
176
164
173
158 | 32
31
40 | 10.5
12.6
11.6
11.3
11.8 | 662
669
640
648
658 | | 1055
1068
1049
1093
1085 | 16
24
14.8
16
17 | | 0 | | | | | | | | | | | 133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBA3
133-047-20ABBC | 43-53
43-53 | 03/21/90
04/24/90
04/24/90
06/25/90
06/05/86 | MD
WC
MD | 25 | 2.8
3
2.9
4.7
0.3 | 1.4 | 322
343
360
304
62.1 | 178
178
180
174
208 | 31
31
30
28
803 | 11
10.6
9.5
9.8
506 | 703
712
699
700
2290 | 0 | 1075
1102
1100
1034
994 | 16
18
23
18
681 | 0.2 | 1
0
6.2 | 0.34 | 2080
4390 | 1600
1010 | 1100 | 4
63 | 0.3 | 2600 | 9 | | | 133-047-20ABBC
133-047-20ABBC
133-047-20ABBC
133-047-20ABBC
133-047-20ABBC | 0 - 0
0 - 0 | 11/19/86
01/13/87 | MD | 13 | 2.3
0
5
2.7 | 0.39 | 130
250
231
247
238 | 120
120
117
110
108 | 360
399
472
462
414 | 190
188
204
193
193 | 0
0
0
0 | 0 | 1500
2643
2242
2157
1856 | 250
243
235
214
198 | 0.8 | 1.6 | 4.6 | 2570 | 820 | 0 | 42 | 5.5 | | | | | 133-047-20ABBC
133-047-20ABBC
133-047-20ABBC
133-047-20ABBC
133-047-20ABBC | 0 - 0 | 04/22/88
02/26/89 | MD | 3.7 | 26.6
4.1
0.07
47
4.5 | 0.38 | 226
270
280
311
165 | 175
164
130
105
102 | 498
493
380
200
376 | 158
220
140
193
204 | 0
0
106 | 0 | 2125
2154
1900
895
1811 | 308
235
220
261
197 | 2
0
0 | 1.3 | 2.6 | 3110 | 1200 | 1100 | 37 | 4.8 | 3600 | 5 | | | 133-047-20ABBC
133-047-20ABBC
133-047-20ABBC
133-047-20ABBC
133-047-20ABBC | 0 - 0 | | MD
MD | | 8.2
12
1.1
11.9
3.5 | | 349
427
191
654
271 | 87
104
163
429
174 | 328
360
527
1551
643 | 301
262
298
617
329 | 1334
1286
879 | | 742
892
1432
7376
2883 | 244
255
307
575
285 | 0 | 0
0
3 3
0 | | | | | | | | | | | 133-047-20ABBC
133-047-20ABBD
133-047-20ABBD
133-047-20ABBD
133-047-20ABBD | 0 - 0
0 - 0
0 - 0 | 03/21/90
12/17/87
01/29/88
10/06/88
11/08/88 | MD
MD
MD | | 1.8
13.3
6.5
1.6 | | 218
279
324
177
147 | 123
149
164
154
153 | 445
534
542
377
439 | 236
252
269
97
147 | 22
0
0 | | 2139
2280
2754
1753
2288 | 178
251
283
274
244 | 0 | 37.6
55
0 | | | | | | | | | | | 133-047-20ABBD
133-047-20ABBD
133-047-20ABBD
133-047-20ABBD
133-047-20ABCA1 | | 04/27/89 | MD
MD | 33 | 8.4
5,4
24
2.3
7.4 | 0.72 | 199
207
255
219
220 | 173
159
154
105
240 | 507
507
263
444
130 | 178
230
134
186
10 | 0
185
960 | 0 | 2556
3098
2828
1622
720 | 234
254
259
273
200 | 0
0
0
0
0.3 | 0
0
0
0 | 0.36 | 2040 | 1500 | 750 | 15 | 1.5 | | | | | 133-047-20ABCA1
133-047-20ABCA1
133-047-20ABCA1
133-047-20ABCA1
133-047-20ABCA1 | 50-60 | | WC
WC
MD | 28
34 | 9.07
8.1
15
21.1
20 | 0.63
0.93
0.23 | 225
210
250
253
288 | 234
200
270
289
297 | 110
130 | 10.2
11
11
13.8
11 | 987
894
989
819
665 | 0 | 672
550
870
1091
1246 | 229
180
190
193.7
193 | 0.3
0.3
0.3 | 0.1 | 0.39
0.17
0.51 | 1990
1740
2260 | 1520
1300
1700 | 610
920 | 16
15
14 | 1.5 1.3 1.4 | 2400
3100 | 15
10 | | | 133-047-20ABCA1
133-047-20ABCA1
133-047-20ABCA1
133-047-20ABCA1
133-047-20ABCA1 | 50-60
50-60 | 11/21/86
12/19/86
01/28/87
02/26/87
06/29/89 | MD
MD
MD | 21 | 20.4
18.7
16.6
19.3
0.18 | 2.7 | 279
273
222
239
540 | 297
291
239
300
570 | 120
161 | 11.5
11.2
11.4
12.1
20 | 791
670
773
958
791 | 0 | 1542
1167
1056
1018
3000 | 187
203
133
193
220 | 0.2 | 52 | 1.2 | 5050 | 3700 | 3000 | 12 | 1.6 | 5900 | 12 | | | 133-047-20ABCA1
133-047-20ABCA2
133-047-20ABCA2
133-047-20ABCA2
133-047-20ABCA2 | 118-122
118-122
118-122 | 04/24/90
04/09/86
04/09/86
06/30/86
09/18/86 | HD
WC
WC | 16
33
28
31 | 1.2
0.15
0.2
0.38
1.5 | 3.8
0.12
0.16
0.19
0.17 | 380
78.7
75
72
74 | 310
29.7
31
32
31 | 290
70.3
69
71
69 | 27
6.2
6.8
8.1
7 | 1530
494
468
462
480 | 0
0
0 | 1300
56
59
60
62 | 210
16.9
20
19 | 0.2
0.4
0.5
0.5
0.5 | 1
1
1 | 0.49
0.49
0.6
0.58 | 3290
501
527
521
532 | 2200
319
310
310
310 | 970
0
0 | 22
32
32
32
32 | 2.7
1.7
1.7
1.8
1.7 | 4200
840
870
860 | 11
9
11
10 | | | 133-047-20ABCA2
133-047-20ABCA2
133-047-20ABCA2
133-047-20ABCA2
133-047-20ABCA2 | 118-122
118-122
118-122 | 09/18/86
11/21/86
12/19/86
01/30/87
02/26/87 | MD
MD
MD | | 3.5
1.9
0.2 | | 85.4
82
81
83
85 | 31.8
32
33
32
36 | 69.2
69
66
68
75 | 9.3
7.1
7.4
6.8
7.2 | 390.8
472
483
483
482 | | 60.6
63
52
54
51 | 16.1
15
17
16
15 | | | | | | | | | | | | | | Screened | | | l ←— | | | | ton const- | | | —(milliq | grams | per liter |) | | | | | | > 1 | | | Spec | | | |--|-------------------------------|--|----------------|----------------------------|-------------------------------------|--------------------------------------|---------------------------------|---------------------------------|------------------------------|------------------------------------|--------------------------------------|-------------|-----------------------------------|---------------------------------|--------------------------|-----------------------|--|--------------------------------------|----------------------------------|----------------------------|----------------------------|---------------------------------|--------------------------------------|----------------------|----| | Location | Interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | к | нсо3 | ∞₃ | SO4 | CI | F | NO ₃ | В | TDS | Hardnes
CaCO ₃ | s as
NCH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) | рН | | 133-047-20ABCA2
133-047-20ABCA2 | 118-122 | 03/24/87
03/24/87 | | 17 | 0.04 | 0.12 | 76
90 | 3 2
3 4 | 71
71 | 7.4 | 487
477 | 0 | 5 2
5 5 | 19
16 | 0.5 | 1 | 0.34 | 516 | 320 | 0 | | 1.7 | 803 | 7.9 | | | 133-047-20ABCA2
133-047-20ABCA2
133-047-20ABCA2 | 118-122 | 04/19/88
06/29/89
04/24/90 | WC | 29
28
31 | 0.8
0.46
0.16 | 0.13
0.11
0.14 | 74
75
77 | 31
31
33 | 69
71
69 | 7.2
7.3
7.5 | 484
477
501 | 0
0
0 | 61
54
56 | 15
21
23 | 0.5
0.4
0.4 | 7.3
6.7 | 0.29
0.4
0.46 | 527
531
551 | 310
310
330 | 0
0
0 | 32
32
31 | 1.7
1.8
1.6 | 831
983
900 | 10
12
11 | | | 133-047-20ABCA3
133-047-20ABCA3
133-047-20ABCA3
133-047-20ABCA3
133-047-20ABCA3 | 273-278
273-278
273-278 | 04/09/86
04/09/86
04/19/88
06/29/89
04/24/90 | WC
WC
WC | 31
28
27
29 | 0.15
0.76
0.53
0.86
1.3 | 0.15
0.2
0.16
0.13
0.18 | 120
110
120
120
120 | 43.7
45
46
43
47 | 56.5
56
49
50
49 | 6.8
7.5
7.9
7.6
7.9 | 486
458
485
470
480 | 0 0 0 | 194
200
190
190
190 | 9.3
12
9.1
11
9.5 | 0.4
0.4
0.4
0.3 | 0.1
1
0.6
5 | 0.43
0.38
0.23
0.33
0.36 | 670
690
691
683
696 | 480
460
490
480
490 | 84
91
92
100 | 20
21
18
18 | 1.1
1.1
1
1 | 940
827
1138
1065 | 9
11
11
11 | | | 133-047-20ABCA4
133-047-20ABCA4
133-047-20ABCA4
133-047-20ABCA4
133-047-20ABCA4 | 64-74
64-74 | 02/26/89
03/23/89
04/26/89
06/05/89
06/28/89 | MD | | 3.2
4.4
3.9
3.2
1.3 | | 223
270
274
276
275 | 139
156
163
159
159 | 233
236
247 | 17.8
17
16.9
17.2
17.6 | 1592
1640
1775
1674
1602 | | 124
110
97
112
163 | 222
238
252
230
201 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | 133-047-20ABCA4
133-047-20ABCA4
133-047-20ABCA4
133-047-20ABCA4
133-047-20ABCA4 | 64-74
64-74 | 06/28/89
08/03/89
09/07/89
10/09/89
11/06/89 | MD | 28 | 4.1
1.5
5.7
13.8
9.2 | 0.47 | 250
268
259
365
310 |
170
156
145
234
189 | | 20
17.7
17.7
21.1
20.5 | 1670
1559
1669
1339
1478 | 0 | 190
141
126
1366
605 | 230
237
240
295
264 | 0.3 | 0 | 0.91 | 1960 | 1300 | 0 | 28 | 2.9 | 3390 | 12 | | | 133-047-20ABCA4
133-047-20ABCA4
133-047-20ABCA4
133-047-20ABCA4
133-047-20ABCA4 | 64-74
64-74
64-74 | 12/27/89
02/06/90
03/21/90
04/24/90
04/24/90 | MD
MD
MD | 31 | 10.2
11.9
10.1
6.2 | 0.4 | 285
265
240
241
250 | 163
151
164
155
160 | 253
240 | 21.1
18.3
18.1
19.1
20 | 1601
1680
1671
1504
1160 | 0 | 236
176
169
206
230 | 239
232
233
214
220 | 0.2 | 0 | 1.2 | 1730 | 1300 | 330 | 29 | 2.9 | 3100 | 11 | | | 133-047-20ABCA4
133-047-20ABCBA1
133-047-20ABCBA1
133-047-20ABCBB1
133-047-20ABCBB1 | 58-63
58-63
60-65 | 06/25/90
06/29/89
04/24/90
02/26/89
03/23/89 | WC
WC
MD | 24
26 | 7.1
1.3
0.85
4.3
3.9 | 7.1
5.6 | 241
320
490
209
326 | 168
240
310
114
183 | 400
380
240 | 19.9
25
30
24
23.7 | 1542
1120
1060
1064
1775 | 0 | 349
1500
2000
421
286 | 227
190
250
124
232 | 0.1
0.1
0 | 0
1
1
0
0 | 2.6
2.7 | 3260
4020 | 1800
2500 | 870
1600 | 32
25 | 4.13.3 | 4250
5000 | 12
11 | | | 133-047-20ABCBB1
133-047-20ABCBB1
133-047-20ABCBB1
133-047-20ABCBB1
133-047-20ABCBB1 | 60-65
60-65
60-65 | 04/26/89
06/05/89
06/28/89
06/28/89
08/03/89 | MD | 30 | 6.4
5.8
3.2
7.2
3.5 | 1 | 340
349
330
320
328 | 191
193
185
200
187 | 256
250 | 25
23.3
22.5
26
23.2 | 2008
1723
1709
1860
1922 | 0 | 226
211
200
230
194 | 263
250
250
240
242 | 0
0
0
0.3 | 0
0
0
0.5 | 0.84 | 2220 | 1600 | 97 | 25 | 2.7 | 3550 | 11 | | | 133-047-20ABCBB1
133-047-20ABCBB1
133-047-20ABCBB1
133-047-20ABCBB1
133-047-20ABCBB1 | 60-65
60-65 | 09/07/89
10/09/89
11/06/89
12/27/89
02/07/90 | MD | | 6.1
12.3
7.5
16.3 | | 317
300
377
395
401 | 180
181
219
230
225 | 268 | 22
21
24.8
28.6
22.9 | 1915
1310
1733
1516
1713 | | 187
549
689
800
888 | 257
227
244
237
238 | | 0 | | | | | | | | | | | 133-047-20ABCBB1
133-047-20ABCBB1
133-047-20ABCBB1
133-047-20ABCBB1
133-047-20ABCBB1 | 60-65
60-65 | 03/21/90
04/24/90
04/24/90
06/25/90
07/29/74 | WC | 31
19 | 13.7
13.6
16
14.5
0.43 | 0.63 | 378
398
400
368
110 | 243
241
250
249
43 | 269
270 | 23.2
23.4
30
23.2
5.7 | 1641
1694
1350
1666
470 | 0 | 958
1002
970
1042
170 | 227
221
210
210
14 | 0.2 | 2 0
0
1 | 1.1 | 2860
646 | 2000
450 | 920
65 | 22
19 | 2.6 | 4300 | 9 | | | 133-047-20ABD
133-047-20ABD | | 12/03/75
01/21/76 | WC | 20 | 2.1 | 0.14 | 100 | 41 | 55 | 7.7 | 475
470 | 0 | 150 | 12 | 0.5 | 1.5 | 0.4 | 624 | 420 | 3 0 | 22 | 1.2 | | | | | 133-047-20ABD
133-047-20ABD
133-047-20ABD | 240-300 | 06/30/76
09/18/80 | | 27
27
31 | 5.8
1.8
3.4 | 0.38
0.17
0.21 | 100
120
170 | 41
49
71 | 55
61
72 | 5.2
10 | 473
509
789 | 0
0 | 150
130
110 | 10
18
40 | 0.4
0.3
0.4 | 1.9
0.7
1 | $\begin{smallmatrix}1.5\\0.1\\0.31\end{smallmatrix}$ | 632
664
898 | 420
500
720 | 32
83
70 | 22
21
18 | 1.2
1.2
1.2 | 1480
1100
1500 | 9
11 | | | 133-047-20ABD
133-047-20ABD
133-047-20ABD
133-047-20ABD
133-047-20ABD | 240-300
240-300 | 02/16/84
03/28/84
08/28/84
06/19/85
07/30/85 | WC | 3 0
3 0
2 8 | 0.27
6.75
3.5
5.7
17 | 0.03
0.27
0.21
0.3
0.4 | 190
195
180
240
180 | 80.5
82
75
110
77 | 74
80
71
93
71 | 9
9.4
10
11
10 | 1060
1080
909
1340
921 | 0 | 85
82
110
55
110 | 54.7
62.5
50
97
58 | 0.3
0.2
0.4 | 0.1
1
1 | 0.44
0.4
0.33 | 1010
1040
979
1300
1010 | 806
825
760
1100
770 | 13
0
11 | 17
17
17
16
17 | 1.1
1.2
1.1
1.2
1.1 | 1750
1700 | 10
10
10 | | | 133-047-20ABD
133-047-20ABD
133-047-20ABD
133-047-20ABD
133-047-20ABD | 240-300
240-300
240-300 | 07/30/85
07/31/85
08/01/85
08/02/85
08/03/85 | MC
MC | 29
26
30
29
29 | 4.6
4
4
3.9
3.9 | 0.25
0.22
0.22
0.21
0.21 | 210
190
190
190
180 | 99
86
86
84
82 | 78
75
72
74
72 | 11
11
11
10
10 | 1010
990
988
966
947 | 0 0 0 | 94
100
100
110
110 | 81
65
66
62
61 | 0.3
0.3
0.3
0.3 | 1
1
1
1 | 0.36
0.33
0.35
0.34
0.36 | 1150
1050
1050
1040
1020 | 930
830
830
820
790 | 38
16
18
28
11 | 15
16
16
16 | 1.1
1.1
1.1
1.1 | 1800
1590
1560
1560
1540 | 10
10
10
10 | | | | - | ٥ | | |---|---|---|--| | | • | 4 | | | - | h | ٥ | | | | | | | | | | | | | | | Screened | | |] (| | | | | | | —(millig | grams | per liter | ·)—— | | | | | | →I | | | Spec | | | |---|---|-------------------------------|--|----------------------------|----------------------------|----------------------------------|--------------------------------------|-----------------------------------|---------------------------------|--------------------------------|--------------------------------------|--------------------------------------|------------------|-----------------------------------|---------------------------------|-------------------------------|--------------------|--------------------------------------|--------------------------------------|----------------------------------|---------------------------|----------------------|--------------------------|--------------------------------------|----------------------|----| | | Location | Interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | к | нсо3 | ∞₃ | SO4 | CI | F | NO ₃ | В | TDS | Hardnes
CaCO ₃ | is as
NCH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) | pН | | | 133-047-20ABD
133-047-20ABD
133-047-20ABD
133-047-20ABD
133-047-20ABD | 240-300
240-300
240-300 | 08/05/85
08/06/85
08/06/85
08/07/85
08/08/85 | WC
WC
WC
WC | 29
29
30
30
29 | 3.8
3.8
3.8
3.8 | 0.21
0.21
0.21
0.21
0.21 | 180
180
180
180 | 81
80
79
79 | 73
71
73
73
72 | 10
10
10
10 | 935
938
941
935
930 | 0 0 0 | 110
110
110
110
110 | 60
61
60
59 | 0.3
0.3
0.3
0.3 | 1
1
1
1 | 0.34
0.34
0.34
0.33
0.33 | 1010
1010
1010
1010
1010 | 780
780
770
770
770 | 16
10
3
8
12 | 17
16
17
17 | 1.1
1.1
1.1
1.1 | 1530
1520
1585
1590
1525 | 10
10
10
10 | | | | 133-047-20ABD
133-047-20ABD
133-047-20ABD
133-047-20ABD
133-047-20ABD | 240-300
240-300
240-300 | 08/13/85
08/21/85
09/25/85
10/10/85
10/16/85 | WC
WC
WC
WC | 29
31
27
31
25 | 3.6
6.2
5.5
5.5 | 0.21
0.27
0.26
0.33
0.43 | 180
220
210
220
210 | 79
99
98
100
96 | 68
73
84
84
79 | 10
11
11
12
11 | 910
960
1120
1170
1080 | 0
0
0
0 | 110
100
90
92
98 | 61
82
91
97
83 | 0.4
0.3
0.2
0.3 | 1
1
1
1 | 0.33
0.35
0.45
0.45
0.4 | 991
1100
1170
1220
1150 | 770
960
930
960
920 | 29
170
9
2
34 | 16
14
16
15 | 1.1
1.2
1.2
1.1 | 1480
1810
1835
1850
1810 | 10
10
8
8 | | | | 133-047-20ABD
133-047-20ABD
133-047-20ABD
133-047-20ABD
133-047-20ABD | 240-300
240-300
240-300 | 11/01/85
12/12/85
03/04/86
04/09/86
04/10/86 | WC
HD
WC
HD
WC | 32
30
34 | 3.6
3.53
14
3.19
5.5 | 0.25
0.28
0.36
0.24
0.27 | 210
218
240
205
200 | 98
101
110
89.2
95 | 82
83.2
94
83.9
83 | 9.7
11
9.6
9.7 | 1120
1220
1220
1080
1040 | 0
0
0 | 88
78
70
88
97 | 87
109
110
110
90 | 0.3
0.3
0.3
0.2 | 1
1
1 | 0.43
0.38
0.49
0.38 | 1170
1200
1280
1120
1130 | 930
962
1100
879
890 | 9
52
37 | 16
16
17
17 | 1.2
1.2
1.2
1.2 | 1670
1960 | 8
7 | | | | 133-047-20ABD
133-047-20ABD
133-047-20ABD
133-047-20ABD
133-047-20ABD | 240-300
240-300
240-300 | 06/30/86
09/24/86
09/24/86
10/29/86
11/14/86 | WC
WC
MD
MD
MD | 31
28 | 5.9
7.9
9
4.2 | 0.22 | 190
170
168.7
212
183 | 87
70
68
102
79 | 79
75
65.1
79
73 | 10
11
6.9
10
10 | 981
832
829
1093
990 | 0 | 100
130
137.6
116
120 | 78
63
55.2
96
67 | 0.2 | 1 | 0.56
0.52 | 1060
965 | 830
710 | 28
30 | 17
18 | 1.2 | 1725
1725 | 10
9 | | | | 133-047-20ABD
133-047-20ABD
133-047-20ABD
133-047-20ABD
133-047-20ABD | 240-300
240-300
240-300 | 11/21/86
12/10/86
12/30/86
01/13/87
02/12/87 | MD
MD
MD
MD
MD | | 11
4.1
3.6
3.2
2.9 | | 184
168
158
162
165 | 78
72
67
65
61 | 82
73
69
69
66 | 9.6
11.7
9.2
8.9
8.9 | 1020
850
799
773
717 | |
120
119
98
98
109 | 65
56
49
45
35 | | | | | | | | | | | | | 3 | 133-047-20ABD
133-047-20ABD
133-047-20ABD
133-047-20ABD
133-047-20ABD | 240-300
240-300
240-300 | 02/26/87
03/13/87
03/23/87
03/24/87
07/03/87 | MD
WC
MD
WC | 35
30 | 3.1
2.9
2.5
3.1
2.7 | 0.19 | 151
150
130
150
130 | 61
58
55
56
54 | 66
71
65
71
64 | 8.6
8.5
8.9
9.5
8.9 | 711
679
665
664
531 | 0 | 109
123
130
124
140 | 36
32
32
30
32 | 0.4 | 16.7 | 0.33 | 788
731 | 550
550 | 6
110 | 20
20 | 1.2 | 1080 | 8 - 4 | | | | 133-047-20ABD
133-047-20ABD
133-047-20ABD
133-047-20ABD
133-047-20ABD | 240-300
240-300
240-300 | 04/19/88
06/29/88
02/26/89
06/29/89
05/22/90 | WC
WC
MD
WC
WC | 23
28
28
24 | 3.5
2.4
3
3.3
1.4 | 0.16
0.14
0.16
0.16 | 140
130
149
130
120 | 54
56
61
59
50 | 62
65
59
64
63 | 8.4
8.2
9.8
8.9
8.4 | 657
618
656
623
524 | 0 0 0 | 120
140
138
140
160 | 34
34
51
46
34 | 0.5
0.5
0
0.3
0.4 | 1
0
1
0.2 | 0.26
0.5
0.39
0.4 | 771
770
788
720 | 570
560
570
510 | 33
49
57
76 | 19
20
19
21 | 1.1
1.2
1.2 | 1062
1360
1037 | 9
9
9 | | | | 133-047-20ABDA1
133-047-20ABDA1 | 95-115 | 09/23/86
09/23/86 | WC
MD | 30 | 9.8
10.9 | 0.7 | 210
219.8 | 150
163 | 140
125 | 16
9.4 | 1420
1480 | 0 | | 210
233.1 | 0.1 | 1 | 0.64 | 1520 | 1100 | | 21 | 1.8 | 2390 | 10 | | | | 133-047-20ABDA1
133-047-20ABDA1
133-047-20ABDA1 | 95-115 | 12/30/86
03/24/87
03/24/87 | MD
MD | 3 3 | 0.9
0.04
0.4 | 0.3 | 174
130
150 | 122
100
101 | 110
67
70 | 11.9
10
9.9 | 921
774
719 | 0 | 74
65
61 | 216
100
115 | 0.3 | 1 | 0.25 | 888 | 740 | 100 | 16 | 1.1 | 1304 | 8.8 | | | | 133-047-20ABDA1
133-047-20ABDA1
133-047-20ABDA1
133-047-20ABDA1
133-047-20ABDA1 | 95-115
95-115
95-115 | 04/19/88
02/26/89
03/28/89
04/26/89
06/05/89 | WC
MD
MD
MD
MD | 29 | 1.2
0.8
0
0.3 | 0.85 | 130
166
162
163
158 | 100
121
120
127
120 | 70
67 | 9.7
10.6
11.2
10.2
11.1 | 941
927
910
933
814 | 0 | 52
65
72
79
58 | 78
145
158
168
110 | 0.4
0
0
0 | 1
0
0
0 | 0.23 | 932 | 740 | 0 | 16 | 1.1 | 1400 | 10 | | | | 133-047-20ABDA1
133-047-20ABDA1
133-047-20ABDA1
133-047-20ABDA1
133-047-20ABDA1 | 95-115
95-115
95-115 | 06/28/89
06/28/89
08/03/89
09/07/89
10/10/89 | MD
WC
MD
MD
MD | 28 | 0.8
0.08
0
0 | 0.45 | 163
140
163
154
164 | 119
120
122
112
125 | 69
76
78 | 10.4
10
10.2
10.8
15.7 | 909
875
806
838
825 | 0 | 58
74
62
51
67 | 133
130
136
135
140 | 0
0.2
0 | 2.7 | 0.32 | 1010 | 840 | 130 | 15 | 1 | 1770 | 10 | | | | 133-047-20ABDA1
133-047-20ABDA1
133-047-20ABDA1
133-047-20ABDA1
133-047-20ABDA1 | 95-115
95-115
95-115 | 11/07/89
12/27/89
02/06/90
03/21/90
04/24/90 | MD
MD
MD
MD
MD | | 0.2
0.3
0.2
0 | | 156
167
155
143
142 | 117
120
114
123
119 | 75
91
73 | 14.2
12.9
12.5
10.8
10.5 | 892
803
897
813
825 | | 67
86
108
203
121 | 141
153
155
298
158 | | 0 | | | | | | | | | | | | 133-047-20ABDA1
133-047-20ABDA1
133-047-20ABDAC1
133-047-20ABDAC1 | 95-115
175-275
175-275 | 04/24/90
06/25/90
10/08/86
10/28/86 | WC
MD
WC
MD | 24
40 | 0.05
0.2
1.1
17 | 0.7 | 150
142
260
263 | 150
120
220
221 | 71
72
190
167 | 10
10.6
17
14 | 837
742
1490
1417 | 0 | 140
128
410
501 | 160
163
220
223 | 0.4 | 1
0
1 | 0.29 | 1120
2090 | 990
1600 | 310
940 | 13
21 | 1 2.1 | 1850
3030 | 10
10 | | | | 133-047-20ABDAC1 | 175-275 | 11/14/86 | MD | | 9.2 | | 225 | 134 | 116 | 11.4 | 1210 | | 261 | 128 | | | | | | | | | | | | | | Screened | | | I ← | | | | | | | —(milliq | grams | per lite | ·)—— | | | | | | 1 | | | Spec | | | |--|-------------------------------|--|----------------------------|----------------------|----------------------------------|------------------------------|-----------------------------------|---------------------------------|---------------------------------|------------------------------------|---------------------------------------|-------------|-----------------------------------|-----------------------------------|--------------------------|--------------------|-----------------------------|------------------------------|------------------------------|--------------------------|----------------------|--------------------------|------------------------------|-------------------|----| | Location | Interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | к | нсо3 | ∞₃ | SO4 | CI | F | NO ₃ | В | TDS | Hardne
CaCO ₃ | SS AS
NCH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) | рН | | 133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1 | 175-275
175-275
175-275 | 12/10/86
12/30/86
01/13/87 | MD
MD
MD
MD
MD | | 12.7
6.1
5
4.3
4.5 | | 205
165
150
138
145 | 124
97
85
79
75 | 109
88
80
70
93 | 11.1
10.8
8.9
8.5
8.7 | 1051
791
728
676
638 | 2 | 248
229
175
171
159 | 110
76
62
48
45 | | | | | | | | | | | | | 133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1 | 175-275
175-275
175-275 | 02/12/87
02/26/87
03/13/87
03/23/87
03/24/87 | MD
MD
WC
MD | 34 | 4 . 1
3 . 4
3 . 2
3 . 9 | 0.14 | 144
131
132
120
133 | 75
70
67
64
64 | 71
67
73
65 | 8.4
8.2
8
8.3
8.2 | 632
609
588
579
580 | 0 | 164
169
169
180
181 | 44
40
35
35
34 | 0.5 | 1 | | 796 | 560 | 88 | 20 | 1.2 | 1186 | 8.5 | | | 133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1 | 175-275
175-275
175-275 | 07/02/87
09/11/87
10/07/87
10/13/87
12/04/87 | WC
MD
MD
WC
MD | 32
28 | 5.2
4.9
8.4
4 | 0.17 | 140
176
179
130
185 | 80
78
72
85
74 | 80
85
74
68
73 | 9
9.3
8.2
7.9
8.3 | 601
622
604
538
633 | 0 | 260
213
228
220
209 | 52
38
41
36
41 | | 8.1 | 0.39 | 963
854 | 680
670 | 190
230 | | 1.3 | 1380 | 8 | | | 133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1 | 175-275
175-275
175-275 | 03/31/88
04/22/88
10/06/88
01/26/89
02/26/89 | MD
WC
MD
MD
MD | 28 | 5.1
4.5
3.6
0
5.9 | 0.14 | 148
120
113
141
149 | 63
71
51
70
77 | 56
70
53
67 | 7.9
8.9
7.4
8.8
8.5 | 635
613
523
644
634 | 0 | 201
220
214
264
250 | 35
40
13
44
37 | 0.5 | 1
0
0
0 | 0.33 | 866 | 590 | 89 | 20 | 1.3 | 1260 | 9 | | | 133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1 | 175-275
175-275
175-275 | 03/11/89
03/12/89
03/29/89
04/27/89
06/05/89 | MD
MD
MD
MD
MD | | 5.6
4.7
0.3
0.6
5.7 | | 165
151
135
112
151 | 75
71
70
70
88 | 67
69
75
64
89 | 8.1
8.5
9
8.2
9.7 | 575
593
576
496
651 | | 252
250
172
154
270 | 34
37
39
34
49 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | 133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1 | 175-275
175-275
175-275 | 06/29/89
06/29/89
08/03/89
09/07/89
10/10/89 | MD
WC
MD
MD
MD | 17 | 10.7
14
1
3.9
5.2 | 0.64 | 143
110
146
139
125 | 84
70
71
66
72 | 90
67
76
79
77 | 8.5
8.4
8.4
8.7
12.4 | 679
606
580
586
677 | 0 | 222
170
237
253
306 | 52
40
34
36
53 | 0.4 | 1.5
0 | 0.39 | 798 | 560 | 66 | 20 | 1.2 | 1378 | 11 | | | 133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDAC1 | 175-275
175-275
175-275 | 11/06/89
12/27/89
02/06/90
03/21/90
04/24/90 | MD
MD
MD
MD
MD | | 1.6
0.2
0.3
3.7
5.8 | | 139
90
43
130
123 | 67
67
62
91
88 | 75
71
75
86
84 | 9.6
9.8
9.9
9.4
7.8 | 609
578
448
680
656 | | 253
164
132
302
294 | 37
38
38
56
48 | | 0 | | | | | | ä | | | | | 133-047-20ABDAC1
133-047-20ABDAC1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1 | 175-275
115-120
115-120 | 04/24/90
06/28/90
10/24/85
12/09/85
03/04/86 | MC
MC
WC
WC | 28
27
34
32 | 4.1
4.8
15
2.5
9.7 | 0.17
0.22
0.17
0.19 | 130
117
220
220
220 | 89
79
270
260
260 | 85
80
240
240
230 | 8.7
8.9
16
15 | 613
584
1260
1360
1220 | 0
0
0 | 300
292
700
600
770 | 53
42
250
280
260 | 0.4
0.3
0.4 | 0.8
0
1
1 | 0.47
0.58
1.4
0.54 | 1000
2360
2320
2400 | 690
1660
1620
1600 | 190
630
510
620 | 21
24
24
23 | 1.4
2.6
2.6
2.5 |
1560
2860
3460
3600 | 9
10
9
6 | H | | 133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1 | 115-120
115-120
115-120 | 04/09/86
04/09/86
06/30/86
09/18/86
09/18/86 | MD
WC
WC
MD | 36
33
36 | 14.4
7.1
2.5
8.6
8.7 | 0.17
0.2
0.16
0.2 | 221
220
200
250
254.3 | 245
260
250
310
323 | 220
220
200
240
251 | 12.5
13
15
16
25.1 | 1200
1170
1030
1060
960.2 | 0
0
0 | 695
760
660
1100
1413 | 246
240
250
250
253.3 | 0.3
0.4
0.3
0.4 | 1
1
1 | 1.19
1.3
1.3
2.2 | 2230
2340
2120
2740 | 1560
1600
1500
1900 | 660
680
1000 | 23
23
22
21 | 2.4
2.4
2.2
2.4 | 2900
3100
3680 | 9
12
11 | | | 133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1 | 115-120
115-120
115-120 | 10/23/86
11/21/86
12/30/86
01/28/87
02/26/87 | MD
MD
MD
MD
MD | | 11
10.9
6.4
2
2.2 | | 293
282
258
254
241 | 319
304
240
204
200 | 241
224 | 16
15.7
14.1
14.5
14.1 | 933
1062
1076
1063
1111 | | 1596
1665
983
741
624 | 247
217
191
164
156 | | | | | | | ÷ | | | | | | 133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1 | 115-120
115-120
115-120 | 03/24/87
03/24/87
07/22/87
09/09/87
10/07/87 | WC
MD
WC
MD
MD | 20
31 | 7.8
12.9
5.7
3.5
1.2 | 0.15 | 230
238
190
226
217 | 190
192
150
154
137 | 180
186
140
147
120 | 14
13.8
10
9.6
9.5 | 1200
1190
940
809
749 | 0 | 580
559
440
448
461 | 170
172
110
100
84 | 0.3 | 1 | 0.74 | 1980
1540 | 1400
1100 | 370
320 | 22
22 | 2.1 | 2440
2500 | 9
10 | | | 133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1 | 115-120
115-120
115-120 | 10/22/87
11/05/87
11/20/87
12/04/87
12/18/87 | MD
MD
MD
MD | | 1.1
1.6
0.38
0.4 | | 211
256
286
274
314 | 149
161
181
157
179 | 163
154 | 9.2
10.6
13.2
11
12.5 | 662
979
1173
1137
1317 | | 486
424
346
331
293 | 81
119
152
135
175 | | | | | | | | | | | | | | | Screened | | | l (| | | | | | | (millig | rams | per lite | r)——— | | | | | | →1 | | | Spec | | | |------|---|-------------------------------|--|----------------------------|------------------|-----------------------------------|------------------------------|-----------------------------------|---------------------------------|---------------------------------|--------------------------------------|-------------------------------------|-------------|-----------------------------------|---------------------------------|--------------------------|------------------|-----------------------------|------------------------------|------------------------------|-----------------|----------------------|--------------------------|----------------------|----------------|----| | | Location | interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | K | нсо3 | ∞್ತ | so ₄ | CI | F | NO ₃ | В | TDS | Hardnes
CaCO ₃ | NCH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) | рН | | į | 133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1 | 115-120
115-120
115-120 | 01/14/88
01/29/88
02/17/88
03/10/88
03/30/88 | MD
MD
MD | | 0.83
0.8
0
0.5 | | 267
287
240
245
278 | 172
186
170
171
184 | 153
151 | 11.4
12.4
11.9
11.5
12.4 | 1152
986
1100
1215
1251 | | 332
299
316
308
270 | 140
167
150
145
171 | | | | | | | | | | | | | | 133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1 | 115-120
115-120
115-120 | 04/19/88
04/19/88
05/24/88
06/30/88
07/29/88 | MD
WC
MD
MD
MD | 33 | 2.1
2.6
0.7
4.5
0.4 | 0.04 | 232
180
209
191
160 | 144
140
155
155
132 | 163 | | 1029
1030
1214
1232
956 | 0 | 313
360
240
219
260 | 114
120
146
147
108 | 0.5
0
0 | 0
1
0
0 | 0.56 | 1500 | 1000 | 180 | 23 | 1.9 | 2250 | 11 | | | | 133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1 | 115-120
115-120
115-120 | 09/06/88
10/06/88
11/08/88
12/14/88
01/26/89 | MD
MD
MD
MD
MD | | 0.4
0.5
0.2
0 | | 154
180
187
216
238 | 124
132
131
148
163 | 142
168 | 10.5
10.8
10.9
13.4
13.6 | 1003
874
999
1254
1216 | | 287
250
232
286
550 | 112
120
122
143
147 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | | 133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1 | 115-120 | 02/26/89
03/27/89
04/26/89
06/05/89
06/28/89 | MD
MD
MD
MD
MD | | 2.7
5
0.1
1.4 | ¥ | 336
323
263
174
101 | 202
195
166
110
58 | 222 | 18
17.3
18.2
14.7
9.1 | 1390
1402
1434
598
447 | | 879
702
386
589
219 | 209
202
173
69
26 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | | 133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1 | 115-120
115-120
115-120 | 06/28/89
08/02/89
09/07/89
10/10/89
11/06/89 | WC
MD
MD
MD
MD | 30 | 0.35
0
0
1.2
0.3 | 0.05 | 86
112
126
305
166 | 56
63
69
212
104 | 73
77
92
282
151 | | 387
434
560
975
586 | 0 | 240
212
252
1078
607 | 24
26
39
191
65 | 0.5 | 1.5 | 0.55 | 712 | 450 | 130 | 26 | 1.5 | 1169 | 11 | | | 27.4 | 133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1
133-047-20ABDB1 | 115-120
115-120
115-120 | 12/27/89
02/06/90
03/21/90
04/24/90
04/24/90 | MD
MD
MD
MD
WC | 29 | 0.4
0.4
0
0.1
0.61 | 0.06 | 98
101
77
72
74 | 53
59
49
45
46 | 63
79
56
49
49 | | 466
526
427
404
368 | 0 | 183
198
161
157
160 | 24
32
21
15
18 | 0.5 | 0
5.2 | 0.37 | 571 | 370 | 72 | 22 | 1.1 | 912 | 12 | | | | 133-047-20ABDB1
133-047-20ABDB2
133-047-20ABDB2
133-047-20ABDB2
133-047-20ABDB2 | 248-253
248-253
248-253 | 06/25/90
10/24/85
04/09/86
04/09/86
06/30/86 | MD
WC
HD
WC | 27
36
32 | 0.2
7.7
6.4
5.8
3.2 | 0.24
0.17
0.25
0.26 | 197
220
236
240
260 | 144
210
203
240
260 | 180
200
232
230
240 | 17.6
15
14
14
17 | 853
1720
1780
1550
1270 | 0
0
0 | 634
98
251
290
710 | 123
240
270
270
250 | 0.3
0.2
0.2
0.2 | 0
1
1 | 0.21
0.57
0.47
1.6 | 1870
2080
2090
2400 | 1400
1420
1600
1700 | 3
320
680 | 23
26
24
23 | 2.3
2.7
2.5
2.5 | 3020
2780
3500 | 10
10
11 | | | | 133-047-20ABDB2
133-047-20ABDB2
133-047-20ABDB2
133-047-20ABDB2
133-047-20ABDB2 | 248-253
248-253
248-253 | 09/18/86
09/18/86
10/23/86
11/21/86
12/30/86 | WC
MD
MD
MD
MD | 34 | 0.08
4.3
4
0.4
0.5 | 0.23 | 250
253.7
273
194
111 | 250
262
281
96
48 | 240
245
235
95
58 | 14 | 1450
1066
1100
720
464 | 0 | 630
722.8
874
233
194 | 240
250.4
226
72
10 | 0.2 | 1 | 1 | 2380 | 1700 | 460 | 24 | 2.5 | 3400 | 11 | | | | 133-047-20ABDB2
133-047-20ABDB2
133-047-20ABDB2
133-047-20ABDB2
133-047-20ABDB2 | 248-253
248-253
248-253 | 01/28/87
02/25/87
03/24/87
03/24/87
09/09/87 | MD
WC
MD
MD | 9.6 | 0.1
0.3
0.17
0.5
0.06 | 0.09 | 126
119
120
125
161 | 48
49
50
49 | 60
61
53
58
69 | 7.6
8.2
7.7
8.2
7.5 | 470
462
457
412
459 | 0 | 185
177
220
197
197 | 9.4
6.8
14
7.4
14 | 0.5 | 1 | 0.25 | 700 | 500 | 130 | 18 | 1 | 986 | 8.7 | | | | 133-047-20ABDB2
133-047-20ABDB2
133-047-20ABDB2
133-047-20ABDB2
133-047-20ABDB2 | 248-253
248-253
248-253 | 10/06/87
11/05/87
12/04/87
01/14/88
02/17/88 | MD
MD
MD
MD
MD | | 0.2
0.08
0
0 | | 160
163
162
159
145 | 45
46
45
46 | 53
53
51
50
50 | 7.9
7.3
7.1
7.4
7.5 | 465
482
482
453
440 | | 201
196
193
196
215 | 7.6
7.8
7.4
7.4 | | | | | | | | | | | | | | 133-047-20ABDB2
133-047-20ABDB2
133-047-20ABDB2
133-047-20ABDB2
133-047-20ABDB2 | 248-253
248-253
248-253 | 03/10/88
04/19/88
04/19/88
05/24/88
06/30/88 | MD
WC
MD
MD | 27 | 0
0
0.08
0
0 | 0.03 | 157
152
120
149
157 | 51
47
48
56
65 | 52
47
53
56
73 | 7.7
7.4
7.8
7.9
8.8 | 498
447
485
529
495 | 0 | 233
200
200
271
354 | 16.1
9.5
14
26
42 | 0
0.5
0
0 | 0
1
0
0 | 0.26 | 709 | 500 | 100 | 19 | 1 | 1090 | 12 | | | | 133-047-20ABDB2
133-047-20ABDB2
133-047-20ABDB2
133-047-20ABDB2
133-047-20ABDB2 | 248-253
248-253
248-253 | 07/29/88
09/06/88
10/06/88
11/08/88
12/14/88 | MD
MD
MD
MD
MD | | 0.2
1.1
0 | | 156
133
128
137
144 | 66
52
51
55 | 103
62
56
58
55 |
8.7
8.2
7.8
7.9
9.6 | 584
522
417
438
567 | | 343
249
247
259
279 | 44
21
18
21
24 | 0
0
0
0 | 0
0
0
0 | | | 90 | 1:4 * | | Scre | eened | | | I | | | | *** | | | —(milliç | grams | per liter |) | - | | | | | → 1 | | | Spec | | | |---|-------------------------------------|-------------------------|--|----------------------------|----------------------|-------------------------------------|-------------------------------------|-----------------------------------|---------------------------------|---------------------------------|----------------------------------|-----------------------------------|-------------|--------------------------------------|-----------------------------------|---------------------------------|----------------------|-------------------------------------|----------------------------------|---------------------------------|-----------------------|---------------------------|--------------------------|----------------------|----------------|----| | Location | Inte | erval
ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | к | нсо3 | ∞3 | SO ₄ | CI | F | NO ₃ | В | TDS | Hardnes
CaCO ₃ | ss as
NOH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) | ρН | | 133-047-202
133-047-202
133-047-202
133-047-202
133-047-202 | ABDB2 24
ABDB2 24
ABDB2 24 | 8-253
8-253
8-253 | 01/26/89
02/26/89
03/27/89
04/26/89
06/05/89 | MD
MD
MD
MD | | 0.6
0.2
0 | | 154
168
177
154
141 | 58
64
68
61
53 | 60
51
74
59
61 | 8.9
8.5
8.8
8.3
8.7 | 577
559
568
545
450 | | 283
286
342
267
221 | 33
33
42
26
14 | 0 0 0 | 9 9
0
0
0 | | | | | | | | | | | 133-047-201
133-047-201
133-047-201
133-047-201
133-047-201 | ABDB2 24
ABDB2 24
ABDB2 24 | 8-253
8-253
8-253 | 06/28/89
06/28/89
08/02/89
09/07/89
10/10/89 | MD
MD
MD
MD | 27 | 0.09
0
0
0.2 | 0.14 | 174
160
196
141
129 | 64
62
71
48
47 | 69
60
72
65
60 | 8.7
8.5
9.2
8.3
9.3 | 517
509
475
461
468 | 0 | 308
310
368
249
213 | 28
34
46
18
13 | 0.4 | 1.8 | 0.39 | 915 | 650 | 240 | 16 | 1 | 1404 | 12 | | | 133-047-201
133-047-201
133-047-201
133-047-201
133-047-201 | ABDB2 24
ABDB2 24
ABDB2 24 | 8-253
8-253
8-253 | 11/07/89
12/27/89
02/06/90
03/21/90
04/24/90 | MD
MD
MD
MD
MD | | 0.5
0.5
0.3
0 | | 127
134
121
117
124 | 44
46
44
45
52 | 56
53
55
54
55 | 9.6
12.6
8.9
82
8.5 | 499
460
496
501
487 | | 202
196
189
187
246 | 10.4
9.4
10.6
8.8
17 | | 0 | | | | * | | | | | | | 133-047-202
133-047-202
133-047-202
133-047-202
133-047-202 | ABDB2 24
ABDB3
ABDB3 | 8-253
45-50
45-50 | 04/24/90
06/25/90
10/25/85
04/09/86
04/09/86 | WC
MD
WC
HD
WC | 25
25
31 | 0.07
0.9
0.1
0.07
0.31 | 0.14
0.19
0.14
0.35 | 130
193
90
81
91 | 56
79
68
66.1
67 | 57
82
59
54.4
52 | 8.1
10.5
5.8
4.4
4.6 | 473
555
520
606
587 | 0
0
0 | 260
468
86
54
57 | 22
59
62
63
59 | 0.4
0.4
0.4 | 0.9
0
1
0.2 | 0.42
0.23
0.34
0.28 | 793
650
622
653 | 560
500
475
500 | 170
78
22 | 18
20
20
18 | 1
1.1
1.1
1 | 1200
980 | 12 | | | 133-047-201
133-047-201
133-047-201
133-047-201
133-047-201 | ABDB3
ABDB3
ABDB3 | 45-50
45-50
45-50 | 07/01/86
09/18/86
09/18/86
10/23/86
11/21/86 | WC
WC
MD
MD
MD | 27
31 | 0.77
0.76
4.4
5
3.4 | 0.43
0.28 | 92
100
114.9
97
85 | 68
79
82.6
72
73 | 52
57
70.2
49
64 | 5.4
5.5
138
6
6.3 | 571
613
605.7
452
460 | 0 | 74
120
127.7
219
219 | 60
64
58.3
16
61 | 0.3 | 0.3 | 0.37
0.36 | 661
761 | 510
580 | 41
72 | 18
18 | 1 | 1130
1235 | 15
11 | | | 133-047-202
133-047-202
133-047-202
133-047-202
133-047-202 | ABDB4 27
ABDB4 27
ABDB4 27 | 3-278
3-278
3-278 | 04/25/90
04/09/86
04/09/86
07/01/86
09/18/86 | WC
HD
WC
WC
WC | 22
29
25
26 | 0.29
0.06
0.09
0.1
0.63 | 3.5
0.21
0.26
0.28
0.24 | 220
118
110
110
110 | 95
43.7
44
44
44 | 39
67.2
63
63
64 | 8.3
7.8
8.3
9 | 551
489
443
435
474 | 0
0
0 | 550
192
190
190
230 | 20
9.9
13
12
18 | 0.2
0.5
0.5
0.4
0.6 | 1.2
0.1
1
0 | 0.3
0.54
0.42
0.55
0.58 | 1230
680
678
668
736 | 940
476
460
460
460 | 490
93
99
67 | 8
23
23
23
23 | 0.6
1.3
1.3
1.3 | 920
1030
1040 | 9
11
10 | | | 133-047-201
133-047-201
133-047-201
133-047-201
133-047-201 | ABDB4 27
ABDB4 27
ABDB4 27 | 3-278
3-278
3-278 | 09/18/86
12/19/86
03/24/87
03/24/87
04/19/88 | MD
WC
MD
WC | 3.7 | 6.2
0.1
0.05
0.2
0.52 | 0.04 | 123.2
115
110
123
110 | 45.4
46
44
47
45 | 69
77
63
62
58 | 11.4
8.7
9.1
8.9
9.2 | 428
470
460
430
480 | 0 | 258
204
190
198
210 | 8.7
9.2
11
8.4
13 | 0.5 | 1 | 0.32 | 660
710 | 460
460 | 79
66 | 23
21 | 1.3 | 888
1120 | 8.6 | | | 133-047-201
133-047-201
133-047-201
133-047-201
133-047-201 | ABDB4 27
ABDB4 27
ABDB5 10 | 3-278
3-278
8-113 | 02/26/89
06/29/89
04/24/90
04/09/86
04/09/86 | MD
WC
WC
HD
WC | 26
25
35 | 0.4
0.4
0.09
6.16
2.4 | 0.13
0.25
0.14
0.17 | 126
110
110
324
300 | 46
44
46
254
260 | 44
59
58
136
130 | 8.7
8.7
7.4
11
12 | 510
467
474
1060
886 | 0
0 | 186
210
200
927
960 | 8.3
14
12
249
210 | 0
0.4
0.5
0.3
0.2 | 0.7
4.9
0.1 | 0.38
0.4
0.83
0.74 | 704
698
2420
2350 | 460
460
1860
1800 | 73
75
1100 | 22
21
14
13 | 1.2
1.2
1.4
1.3 | 1250
1080
2650 | 12
12
9 | | | 133-047-201
133-047-201
133-047-201
133-047-201
133-047-201 | ABDB5 10
ABDB5 10
ABDB5 10 | 8-113
8-113
8-113 | 07/01/86
09/18/86
09/18/86
10/23/86
11/21/86 | WC
WC
MD
MD | 3 2
3 4 | 0.75
6.9
12
6
3.8 | 0.15
0.17 | 330
370
334.6
370
351 | 300
300
316
319
297 | 150
170
171
168
171 | 13 | 799
869
660
458
886 | 0 | 1200
1300
1778
1818
1725 | 220
230
233.9
236
232 | 0.2 | 1 | 0.99 | 2640
2860 | 2100
2200 | 1400
1450 | 14
15 | 1.4 | 3400
3775 | 13
11 | | | 133-047-202
133-047-202
133-047-202
133-047-202
133-047-202 | ABDB5 10
ABDB5 10
ABDB5 10 | 8-113
8-113
8-113 | 12/19/86
01/28/87
02/26/87
03/24/87
03/24/87 | MD
MD
MD
WC
MD | 13 | 0 . 1
0 . 1
4 . 9
1 0 | 0.17 | 366
346
364
390
365 | 316
304
307
330
312 | 182
175
197
190
186 | 13.5
13.9
13.8
15
14 | 837
773
714
864
848 | 0 | 1521
1520
1642
1400
1626 | 242
239
245
240
246 | 0.3 | 1 | 0.47 | 3010 | 2300 | 1600 | 15 | 1.7 | 3460 | 8.9 | | | 133-047-201
133-047-201
133-047-201
133-047-201
133-047-201 | ABDB5 10:
ABDB5 10:
ABDB5 10: | 8-113
8-113
8-113 | 07/22/87
09/09/87
10/06/87
10/12/87
10/19/87 | WC
MD
MD
WC
WC | 32
30
30 | 0.43
0.06
1
2.1
2.3 | 0.17
0.11
0.13 | 360
328
291
160
140 | 300
240
203
130
110 | 180
162
134
100
97 | 13
11.1
10.6
9.4
8.6 | 708
706
664
527
442 | 0 | 1400
932
871
560
460 | 210
135
132
79
71 | 0.3
0.4
0.3 | 1
9.9
11 | 0.54
0.45
0.4 | 2850
1340
1150 | 2100
930
800 | 1600
500
440 | 15
19
21 | 1.8
1.4
1.5 | 4100
1975
1858 | 11
10
10 | | | 133-047-202
133-047-202
133-047-202
133-047-202
133-047-202 | ABDB5 10
ABDB5 10
ABDB5 10 | 8-113
8-113
8-113 | 11/05/87
11/20/87
12/04/87
01/14/88
02/17/88 | MD
MD
MD
MD
MD | | 1.4
0.3
0
0.1 | | 192
225
197
192
216 | 118
153
116
120
166 | 97
111
97
92
110 | 8.5
9.6
8.5
8.5
9.7 | 597
641
597
612
678 | | 415
584
417
411
659 | 61
89
63
66
107 | | | | | | | | | | | | | | | Screened | | | I ←— | | * | | | | | —(milliç | grams | per liter |) | | | | - | | →1 | | | Spec | | |-------------|---|-------------------------------|--|----------------|----------------------|-------------------------------------|------------------------------|-----------------------------------|---------------------------------|---------------------------------|--------------------------------------|-----------------------------------|------------------|--------------------------------------|-----------------------------------|--------------------------|-------------------------|---------------------------|------------------------------|------------------------------|--------------------------
----------------------|--------------------------|-----------------------------|-----------------| | ı | ocation | interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | K | нсо _з | ∞_3 | SO | CI | F | NO ₃ | В | TDS | Hardnes
CaCO ₃ | ss as
NCH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) pH | | 1
1
1 | 133-047-20ABDB5
133-047-20ABDB5
133-047-20ABDB5
133-047-20ABDB5
133-047-20ABDB5 | 108-113
108-113
108-113 | 03/10/88
04/19/88
04/19/88
05/24/88
06/30/88 | MD
WC
MD | 26 | 1 . 4
1 . 2
2
0 | 0.04 | 230
274
220
278
288 | 178
189
180
234
301 | 130
145 | 10
10.5
11
11.3
13.7 | 665
725
704
748
702 | 0 | 737
822
820
1132
1630 | 20
132
130
168
229 | 0
0.4
0
0 | 0
1
0
0 | 0.42 | 1870 | 1300 | 710 | 18 | 1.6 | 2500 | 10 | | 1
1
1 | 133-047-20ABDB5
133-047-20ABDB5
133-047-20ABDB5
133-047-20ABDB5
133-047-20ABDB5 | 108-113
108-113
108-113 | 07/29/88
09/06/88
10/06/88
11/08/88
12/14/88 | MD
MD
MD | | 0.1
0.1
3
3.5
5.2 | | 304
303
351
369
384 | 314
301
286
293
298 | 190 | 13.9
13.7
13.6
13.3
14.7 | 804
884
883
947
913 | | 1711
1688
1566
1560
1557 | 247
249
239
245
232 | 0 | 0 0 0 | | | | | | | | | | 1
1
1 | 133-047-20ABDB5
133-047-20ABDB5
133-047-20ABDB5
133-047-20ABDB5
133-047-20ABDB6 | 108-113
108-113
108-113 | 01/26/89
02/26/89
06/29/89
04/24/90
04/09/86 | MD
WC
WC | 30
28 | 0 .7
1 .4
0 .87
7 .26 | 0.14
0.16
1.36 | 388
393
330
370
279 | 314
305
280
380
216 | 195
210
210
250
244 | 14.2
14
15
15
63.7 | 910
910
1120
954
790 | 0 | 1620
1580
1200
1600
1180 | 236
222
210
200
480 | 0
0.3
0.3
0.4 | 0
0
1
1
0.1 | 0.98
1.6
2.19 | 2830
3320
2850 | 2000
2500
1580 | 1100
1700 | 19
18
25 | 2
2.2
2.7 | 3830
4000 | 13
12 | |]
]
1 | 133-047-20ABDB6
133-047-20ABDB6
133-047-20ABDB6
133-047-20ABDB6
133-047-20ABDB6 | 50-55
50-55
50-55 | 04/09/86
07/01/86
09/18/86
09/18/86
10/23/86 | WC
WC
MD | 32
28
32 | 5.6
8.2
8.9
13.6 | 1.4
1.3
0.54 | 270
260
200
207.5
302 | 200
200
170
186
248 | 230
240
130
149
90 | 58
71
50
64
14 | 736
687
655
433.2
439 | 0
0
0 | 1200
1100
760
906.2
1106 | 230
220
200
205.4
211 | 0.3
0.3
0.4 | 1
1
1 | 2.2
1
0.9 | 2590
2470
1880 | 1500
1500
1200 | 890
910
660 | 24
25
18 | 2.6
2.7
1.6 | 3300
2600 | 15
12 | | 1
1
1 | 133-047-20ABDB6
133-047-20ABDB6
133-047-20ABDB6
133-047-20ABDB7
133-047-20ABDB7 | 50-55
50-55
95-115 | 11/21/86
12/19/86
04/24/90
09/18/86
09/18/86 | MD
WC
WC | 26
33 | 15.1
15.3
6.5
0.09
5.7 | 8.9
0.32 | 356
350
360
200
208.5 | 259
261
240
180
186 | 157
199
210
160
170 | 14.2
14.6
45
13
15.5 | 697
760
890
1020
981 | 0 | 1722
1437
1400
440
523.4 | 222
197
130
210
209.4 | 0.2 | 1
1 | 1.5 | 2870
1740 | 1900
1200 | 1200
400 | 19
22 | 2.1 | 3500
2575 | 13
11 | | 3 1
1 1 | 133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7 | 95-115
95-115
95-115 | 10/08/86
10/09/86
10/10/86
10/11/86
10/28/86 | WC
WC | 34
34
34
33 | 12
12
10
10 | 0.16
0.13
0.13
0.12 | 190
170
170
160
210 | 170
150
140
140
178 | 150
150
140
140
140 | 14
13
12
12
12 | 1030
958
916
900
891 | 0
0
0
0 | 380
340
310
340
508 | 210
170
160
150
147 | 0.4
0.4
0.4
0.4 | 1
1
1 | 0.98
1
0.97
0.93 | 1670
1510
1430
1430 | 1200
1000
1000
980 | 330
260
250
240 | 22
24
23
24 | 1.9
2.1
1.9
1.9 | 2470
2310
662
2140 | 10 | | 1
1
1 | 133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7 | 95-115
95-115
95-115 | 11/14/86
11/21/86
12/10/86
12/30/86
01/13/87 | MD
MD
MD | | 10.3
15.3
10.2
11.8
5.7 | | 192
187
188
183
181 | 140
145
140
136
135 | 125
128
115
107
100 | | 732
827
803
831
824 | | 530
543
518
403
382 | 122
121
112
106
101 | | | | | | | | | | | | 1
1
1 | 133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7 | 95-115
95-115
95-115 | 01/28/87
02/12/87
02/26/87
03/13/87
03/23/87 | MD
MD
MD | 35 | 11.2
9
11
9.4
7.6 | 0.15 | 187
193
188
188
189 | 127
129
125
126
130 | 100
97
102
114
100 | 9.3
9.2
9
8.9
9.5 | 805
809
814
820
827 | 0 | 355
357
347
347
380 | 97
95
92
89
92 | 0.4 | 1 | | 1340 | 980 | 310 | 18 | 1.4 | 1808 | 9.8 | | 1
1 | 133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7 | 95-115
95-115
95-115 | 03/24/87
04/29/87
05/13/87
05/27/87
07/02/87 | MD
MD
MD | 32 | 11.7
9.4
10
9.6
7.9 | 0.13 | 189
172
188
202
180 | 127
143
144
138
120 | 99
102
99
103
97 | 9.3
10.5
9.2
9 | 807
815
833
830
861 | 0 | 377
377
384
371
320 | 96
91
96
94
94 | 0.4 | 1 | 0.41 | 1290 | 940 | 240 | 18 | 1.4 | 1950 | | | 1
1
1 | 133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7 | 95-115
95-115
95-115 | 07/13/87
07/22/87
09/09/87
09/29/87
10/07/87 | WC
MD
MD | 31 | 8.2
8.7
8.1
11.1
13.6 | 0.13 | 190
180
238
233
233 | 131
120
131
116
116 | 104
96
122
98
98 | 9.7
8.3
8.9
8.7
8.7 | 870
864
839
827
815 | 0 | 302
290
292
292
296 | 95
89
100
92
93 | 0.3 | 4.5 | 0.23 | 1250 | 940 | 230 | 18 | 1.4 | 2100 | 9 | | 1
1
1 | 133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7 | 95-115
95-115
95-115 | 10/19/87
10/22/87
11/02/87
11/05/87
11/20/87 | MD | 30
32 | 6.8
6.5
8.2
8.5 | 0.13 | 160
224
170
234
232 | 110
117
110
116
118 | 95
97
95
99
102 | 8.8
8.3
8.6
8.9 | 832
806
850
857
885 | 0 | 290
261
270
261
243 | 86
80
87
90
93 | 0.3 | 7.7 | 0.34 | 1200
1200 | 850
880 | 170
180 | 19
19 | 1.4 | 1974
1865 | 8
10 | | 1
1
1 | 133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7 | 95-115
95-115
95-115 | 12/04/87
12/17/87
01/14/88
01/29/88
02/17/88 | MD
MD
MD | | 6.8
9.2
9.3
8.7
6.1 | | 234
241
236
227
211 | 112
117
125
124
125 | 104
105
100
106
102 | 9.5 | 885
921
907
814
916 | | 232
246
262
264
262 | 96
99
99
99 | | | | | | | | | | | | | Screened | | | l | | | | | | | (milliq | grams | per lite | r)—— | | | | | | | | | Cooo | | | |--|-------------------------------|--|----------------|------------------|----------------------------------|------|-----------------------------------|---------------------------------|---------------------------------|------------------------------------|--------------------------------------|----------------|--------------------------------------|----------------------------------|------------------|------------------|------|--------------|-----------------------------|---------------|----------|------------|------------------------|--------------|----| | Location | Interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | κ | нсо3 | ∞ ₃ | so ₄ | CI | F | NO ₃ | 8 | TDS | Hardne
CaCO ₃ | ess as
NCH | %
Na | SAR | Spec
Cond
(µmho) | Temp
(∞C) | рΗ | | 133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7 | 95-115
95-115
95-115 | 03/10/88
03/30/88
04/19/88
04/19/88
05/24/88 | MD
MD
WC | 28 | 9.5
6.6
8.7
7.8
9.6 | 0.11 | 217
212
220
170
175 | 122
121
115
110
113 | 101
98
96
100
96 | 9.3
9.4
9.8 | 913
889
742
879
833 | 0 | 270
269
269
290
273 | 100
95
92
91
92 | 0
0.5
0 | 0
1
0 | 0.35 | 1240 | 880 | 160 | 20 | 1.5 | 1900 | 10 | | | 133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7 | 95-115
95-115
95-115 | 06/30/88
07/29/88
09/06/88
10/06/88
11/08/88 | MD
MD
MD | | 9.7
8.8
7.9
9 | | 153
154
149
150
163 | 112
113
102
99
102 | 102
123
91
85
88 | | 817
888
796
774
726 | | 274
284
303
286
264 | 88
84
77
72
75 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | 133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7 | 95-115
95-115
95-115 | 12/14/88
01/26/89
02/26/89
03/29/89
04/27/89 | MD
MD
MD | | 11.4
0
10.7
16.3
7.9 | | 173
181
211
228
83 | 108
108
122
135
79 | 93
93
147
142
76 | 10.4
12.8
13.3 | 861
831
910
1282
592 | | 300
365
422
106
134 |
76
81
94
145
64 | 0
0
0
0 | 0 0 0 | | | | | | | | | | | 133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7 | 95-115
95-115
95-115 | 06/05/89
06/29/89
06/29/89
08/03/89
09/07/89 | MD
WC
MD | 30 | 2.9
3.4
0
4 | 0.09 | 71
100
88
71
122 | 59
51
48
61
61 | 73
61
55
69
65 | 8.3
6.5
6.5
7.8
7.4 | 408
447
365
382
480 | 0 | 161
191
210
173
279 | 27
14
18
36
25 | 0.5 | 0 0 0 0 0 0 | 0.35 | 640 | 420 | 120 | 22 | 1.2 | 1285 | 9 | | | 133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7 | 95-115
95-115
95-115 | 09/19/89
09/27/89
10/09/89
11/06/89
12/28/89 | MD
MD
MD | | 8.3
8.9
7.6
0.5
0.3 | | 159
170
145
89
70 | 97
102
90
44
42 | 89
54 | 11.2
11.3 | 749
783
769
407
366 | | 337
334
348
173
143 | 59
70
76
17
18 | | | | | ė | | | | | | | | 133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB7 | 95-115
95-115
95-115 | 02/06/90
03/21/90
04/24/90
04/24/90
06/14/90 | MD
MC | 29 | 1.1
2.7
1.4
2.7
3.7 | 0.1 | 51
81
88
93
96 | 40
45
50
52
51 | 54
49
48
49
54 | 7.2
65
6.7
6.2
6.9 | 342
388
413
396
425 | 0 | 123
168
186
200
206 | 18
18
17
22
19 | 0.5 | 4.2 | 0.35 | 654 | 450 | 120 | 19 | 1. | 1015 | 9 | | | 133-047-20ABDB7
133-047-20ABDB7
133-047-20ABDB8
133-047-20ABDB8
133-047-20ABDB8 | 95-115
92-102
92-102 | 06/21/90
06/28/90
02/26/89
03/27/89
04/26/89 | MD
MD
MD | | 7.6
7.8
3.2
0
0.2 | | 128
139
243
402
413 | 83
91
138
259
279 | 222 | 9.6
10.2
16.1
18.8
23 | 651
748
1431
1115
1051 | | 261
268
235
1580
1878 | 50
62
172
244
253 | 0
0
0 | 0
0
0
0 | | | | | | | | | | | 133-047-20ABDB8
133-047-20ABDB8
133-047-20ABDB8
133-047-20ABDB8
133-047-20ABDB8 | 92-102
92-102
92-102 | 06/05/89
06/28/89
06/28/89
08/03/89
09/07/89 | MD
WC
MD | 32 | 1.5
0
1.2
0 | 0.21 | 459
397
390
400
357 | 279
239
250
242
213 | 402
337
330
393
380 | 20.4
19.7
22
21
24 | 892
1191
1130
906
1001 | 0 | 2129
1599
1200
1790
1511 | 232
187
220
262
222 | 0.3 | 0
0
1
0 | 3.1 | 3010 | 2000 | 1100 | 26 | 3.2 | 4240 | 11 | | | 133-047-20ABDB8
133-047-20ABDB8
133-047-20ABDB8
133-047-20ABDB8
133-047-20ABDB8 | 92-102
92-102
92-102 | 10/09/89
11/06/89
12/27/89
02/06/90
03/21/90 | MD
MD
MD | | 0.3
0.1
0.6
0.3 | | 245
315
321
297
263 | 168
207
204
183
196 | 273
268 | 20
22.2
26.6
24.2
27.3 | 1216
1429
1177
1280
1260 | | 313
717
704
587
504 | 241
253
244
244
236 | | 0 | | | | | | | | | | | 133-047-20ABDB8
133-047-20ABDB8
133-047-20ABDB8
133-047-20ABDBA1
133-047-20ABDBA1 | 92-102
92-102
55-60 | 04/24/90
04/24/90
06/25/90
09/18/86
09/18/86 | WC
MD
WC | 31
27 | 1.1
1.4
0.4
0.11
4.4 | 0.16 | 226
240
237
70
80.9 | 160
170
194
70
74.5 | 230
289
97 | 25.9
22
27.3
9.3
22.4 | 1563
1620
1342
545
528.9 | 0 | 226
260
531
140
121.5 | 205
200
211
94
82.9 | 0.1 | 0
0
1 | 1.2 | 1950
778 | 1300
460 | 0
16 | 27
31 | 2.8 | 3100
1230 | 11
11 | | | 133-047-20ABDBA1
133-047-20ABDBA1
133-047-20ABDBA1
133-047-20ABDBA1
133-047-20ABDBA1 | 55-60
55-60 | 10/23/86
11/21/86
12/29/86
01/28/87
06/28/89 | MD | 20 | 12.1
7.2
13.7 | 2.8 | 118
149
205
217
400 | 139
160
168
171
160 | | 9
10.3
10.9
9.6
11 | 733
633
754
766
494 | 0 | 223
757
784
671
1300 | 143
143
102
111
22 | 0.2 | 1 | 0.28 | 2220 | 1700 | 1300 | 6 | 0.5 | 2900 | 13 | | | 133-047-20ABDBA1
133-047-20ABDBA2
133-047-20ABDBA2
133-047-20ABDBA2
133-047-20ABDBA2 | 114-119
114-119
114-119 | 04/25/90
09/18/86
09/18/86
10/23/86
11/21/86 | WC
MD
MD | 20
33 | 6.9
12
16.6
4
6.7 | 1.2 | 220
300
292.6
364
408 | 110
300
318
332
402 | 216 | 9.4
15
24.5
14
15.4 | 593
699
632.2
466
768 | 0 | 540
1300
1799
2188
2782 | 26
220
230.2
233
256 | 0.2 | 1 | 0.26 | 1270
2720 | 1000
2000 | 520
1400 | 8
17 | 0.5
1.8 | 1750
3650 | 11
11 | | | | | Screened | | | l <i>←</i> | , | | | | | | —(milliç | grams | per lite | or) | | | | | | >1 | | | Spec | | | |-----|--|---|--|----------------|------------|-----------------------------------|------|-----------------------------------|---------------------------------|----------------------------------|--------------------------------------|-----------------------------------|------------|--------------------------------------|------------------------------------|--------------------|------------------|-------------|--------------|-----------------------------|--------------|---------|-----|----------------|--------------|----| | | Location | interval
(ft) | Date
Sampled | Lab
ID | SiO2 | Fe | Mn | Ca | Mg | Na | κ | н∞ _з | ∞_3 | so ₄ | CI | F | NO ₃ | В | TDS | Hardne
CaCO ₃ | ss as
NCH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) | рН | | | 133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3 | 115-120
115-120
115-120 | 10/22/8
11/05/8
11/20/8
12/04/8
12/18/8 | MD
MD
MD | | 0.1
0.04
0.7
0 | | 226
219
250
265
296 | 176
149
181
176
207 | 137 | 10.4 | 626
648
748
806
864 | | 646
618
672
723
840 | 81
65
85
89
105 | | | | | | | | | | | | | | 133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3 | 115-120
115-120
115-120 | 01/14/8
01/29/8
02/17/8
03/10/8
03/30/8 | MD
MD
MD | | 0 .8
0
0 .7
2 .1 | | 333
331
311
332
371 | 241
244
259
266
261 | 164
159
165 | 11.4
11.7
12.4
12.3
12.7 | 770
622
643
792
753 | | 1133
1096
1232
1305
1362 | 127
127
142
153
157 | | | | | | | | | | | | | | 133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3 | 115-120
115-120
115-120
115-120
115-120 | 04/19/8
05/24/8
06/30/8 | WC
MD | 30 | 3.6
2.1
0.3
6.2
0.6 | 0.22 | 398
320
364
306
271 | 264
260
269
266
245 | 190
232
254 | 13.7
15
14.4
15.5
15.3 | 529
760
706
688
693 | 0 | 1462
1400
1692
1635
1501 | 169
170
180
178
156 | 0.3
0
0 | 0
1
0
0 | 1 | 2760 | 1900 | 1200 | 18 | 1.9 | 3450 | 10 | | | | 133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3 | 115-120
115-120
115-120 | 09/06/8
10/06/8
11/08/8
12/14/8
01/26/8 | MD
MD
MD | | 0.8
1.4
0.2
0.3 | | 143
144
203
249
351 | 118
107
146
171
234 | 135 | | 541
532
668
717
775 | | 394
540
814
961
1508 | 37
55
87
96
180 | 0
0
0
0 | 0
0
0
0 | | | ž. | ÷ | | | | 8 | | | | 133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3 | 115-120
115-120 | 02/26/8
03/27/8
04/26/8
06/05/8
06/28/8 | MD
MD
MD | | 0.6
3.4
1.8
2.9
3.8 | | 398
376
354
375
363 | 268
262
255
244
230 | 379
330 | 24.8 | 1005
967
1066
862
848 | | 1600
1719
1486
1558
1418 | 191
218
211
182
176 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | 279 | 133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3 | 115-120
115-120
115-120 | 06/28/8
08/02/8
09/07/8
10/11/8
11/06/8 | MD
MD
MD | 31 | 3.3
1.9
0
6.3
2.2 | 0.28 | 340
232
199
351
337 | 240
147
122
234
221 | 181
283 | 22
15.4
14.7
22.1
21.1 | 818
589
555
573
657 | 0 | 1400
820
737
1755
1675 | 180
95
83
154
166 | 0.2 | 0 | 2.8 | 2880 | 1800 | 1200 | 23 | 2.7 | 3920 | 10 | | | | 133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3
133-047-20ABDBA3 | 115-120
115-120
115-120 | 12/27/89
02/06/99
03/21/99
04/24/99
04/24/99 | MD
MD
MD | 25 | 3.6
3.9
3.1
0.3
0.08 | 0.13 | 273
193
156
139
150 | 169
119
112
97
100 | 168
125 | 21.6
15.9
13.6
12.1
12 | 621
520
489
469
431 | 0 | 1185
804
653
544
600 | 107
77
51
36
40 | 0.4 | 0.6 | 0.91 | 1240 | 790 | 430 | 21 | 1.6 | 1725 | 12 | | | | 133-047-20ABDBA3
133-047-20ABDBB
133-047-20ABDBB
133-047-20ABDBB
133-047-20ABDBB | 0 - 0
0 - 0
0 - 0 | 06/25/99
02/21/89
10/06/89
11/08/89
12/14/89 | HD
MD
WC | | 1.3
20.9
12.6
81
1.5 | 1.77 | 215
588
262
201
237 | 161
206
190
417
275 | 129
449
455
1468
809 | 15.2
307
36
246
197 | 593
2780 | | 970
4550
3430
7914
3435 | 62
343
213
424
287 | 0.6 | 0.4 | 6.44 | 7810 | 2320 | | 30 | 4.1 | | | | | |
133-047-20ABDBB
133-047-20ABDBB
133-047-20ABDBB
133-047-20ABDBD1
133-047-20ABDBD1 | 0-0
0-0
114-119 | 01/26/89
02/26/89
03/27/89
09/18/86
09/18/86 | MD
MD
WC | 36 | 10.5
27
3
7.5
12.1 | 0.22 | 199
205
150
200
210.3 | 177
130
96
120
132 | 755
213
315
120
132 | 210
124
198
13
31.4 | 0
0
1300
960 | 0 | 2561
2341
1566
32
35.1 | 1111
224
159
130
133.2 | 0
0
0
0.3 | 0
0
0
1 | 0.84 | 1300 | 990 | 0 | 21 | 1.7 | 2130 | 11 | | | | 133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1 | 114-119
114-119
114-119 | 10/23/86
11/21/86
12/30/86
01/28/87
02/26/87 | MD
MD
MD | | 3
4.6
0.3
0.5
0.2 | | 252
202
191
200
148 | 206
151
147
143
113 | 102
79
103
141
154 | 10
8.8
9
10.2
9.3 | 926
803
812
818
673 | | 366
346
332
318
405 | 318
221
207
212
120 | | | | | | | | | | | | | | 133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1 | 114-119
114-119
114-119 | 03/24/87
03/24/87
07/22/87
09/09/87
10/06/87 | MD
WC
MD | 14
30 | 0.38
0.7
2.5
0.09
1.1 | 0.12 | 130
144
210
287
294 | 110
109
170
193
184 | 110
117
26
48
57 | 8.6
8.7
3.8
5.6
7.1 | 522
519
452
598
688 | 0 | 510
558
840
585
417 | 46
40
15
67
137 | 0.4 | 1
0 | 0.36 | 1190
1520 | 780
1200 | 350
850 | 23
4 | 1.7 | 1440
2050 | 9.3 | | | | 133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1 | 114-119
114-119
114-119 | 10/12/87
10/19/87
11/05/87
11/20/87
12/04/87 | WC
MD
MD | 29
29 | 0.04
0.11
0.09
0.2 | 0.24 | 220
220
299
305
296 | 170
170
186
202
177 | | 6.9
6.4
9.5
10.7 | 670
549
1044
972
964 | 0 | 430
470
96
385
431 | 130
120
194
174
160 | 0.4 | 3.5 | 0.37 | 1370
1350 | 1200
1200 | 700
800 | 9 | 0.6 | 2000
1910 | 11
10 | | | | | | | | I 4 | | | | | | | —(millig | rams | per liter) |) | | | -, "" | | -1.5 | →] | | | Spec | | | |-----|--|---|--|----------------|------------------|--------------------------------------|-----------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------|-----------------------------------|--------------|-----------------------------------|---------------------------------|---------------------------------|-------------------------|----------------------------|--------------------------------------|-----------------------------------|--------------------------|----------------------------|---------------------------------|------------------------------|----------------------|----| | | Location | Screened
interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | к | нсо3 | ∞₃ | so ₄ | CI | F | NO ₃ | В | TDS | Hardness
CaCO ₃ | NCH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) | рН | | | 133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1 | 114-119
114-119
114-119 | 01/14/88
02/17/88
03/10/88
04/19/88
04/19/88 | MD
MD
MD | 30 | 0
0
0
0
0.05 | 0.09 | 285
245
247
255
200 | 196
190
195
197
190 | | | 914
904
869
886
1060 | 0 | 473
402
471
499
490 | 143
168
149
165
150 | 0.5 | 0
1 | 0.29 | 1730 | 1300 | 410 | 18 | 1.6 | 2360 | 10 | | | | 133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1 | 114-119
114-119
114-119 | 05/24/88
06/30/88
07/29/88
09/06/88
10/06/88 | MD
MD
MD | | 0.2
0
0.4
0.1 | | 196
178
152
160
204 | 202
202
163
168
202 | | 10.7
11.1
10.9
9.2
9.8 | 1031
825
723
839
1046 | | 483
579
598
526
243 | 150
121
65
55
189 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | | 133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1 | 114-119
114-119
114-119 | 11/08/88
12/14/88
01/26/89
02/26/89
03/27/89 | MD
MD
MD | | 0.2
0.3
0
0.9
0.2 | | 219
213
218
228
206 | 209
193
198
199
180 | 122
111
108 | 10.6
13.7
11.4
11.2
10.9 | 918
939
1059
1032
951 | | 503
719
646
630
516 | 135
75
104
93
108 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | | 133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1 | 114-119
114-119
114-119 | 04/26/89
06/05/89
06/28/89
06/28/89
08/02/89 | MD
MD
WC | 30 | 0
0
0
0.26 | 0.16 | 203
205
182
160
210 | 185
173
151
150
177 | 105
84
74 | 11.5
11.2
9.7
9.9
10.2 | 1236
769
705
670
743 | 0 | 320
573
548
570
515 | 122
74
49
52
81 | 0
0
0
0 . 4 | 0
0
0
3.7
0 | 0.38 | 1380 | 1000 | 467 | 14 | 1 | 2090 | 10 | | | | 133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1 | 114-119
114-119
114-119 | 09/07/89
10/10/89
11/07/89
12/27/89
02/06/90 | MD
MD
MD | | 0
0.3
0.1
0.4
0.4 | | 192
199
188
205
207 | 157
182
160
168
166 | 114
100
69 | 10.3
12.6
13.3
10.5
12.3 | 767
827
843
715
850 | | 551
538
537
540
564 | 66
100
83
76
86 | | 0 | | | | | | | | | | | 280 | 133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1
133-047-20ABDBD1 | 114-119
114-119
114-119 | 03/21/90
04/24/90
04/24/90
06/25/90
09/18/86 | MD
WC
MD | 29
27 | 0.2
0.04
0.2
0.01 | 0.14 | 165
152
160
178
82 | 157
140
150
175
71 | 51
47
49
104
76 | 8.2
7.8
7.3
10.5
6.9 | 645
586
559
851
493 | 0 | 582
541
610
563
190 | 47
31
40
94
51 | 0.4 | 1
0
1 | 0.24 | 1320
749 | 1000
500 | 560
93 | 9
25 | 0.7 | 1835
1210 | 11
11 | | | | 133-047-20ABDBD2
133-047-20ABDBD2
133-047-20ABDBD2
133-047-20ABDBD2
133-047-20ABDBD2 | 53-58
53-58
53-58 | 09/18/86
10/23/86
11/21/86
12/29/86
01/28/87 | MD
MD
MD | | 3.2
4
7.9
2.3
3.5 | | 94.4
98
105
170
134 | 77.2
72
57
127
110 | 87.3
65
75
34
77 | 21.8
6
6.8
5.1
7.5 | 505.7
366
436
612
593 | | 247.1
309
205
216
118 | 55.7
29
70
153
250 | | | | | | | | | | | | | | 133-047-20ABDBD2
133-047-20ABDBD2
133-047-20ABDBD2
133-047-20ABDC
133-047-20ABDC | 53-58
53-58
0-0 | 06/29/89
06/29/89
04/25/90
05/03/84
07/30/85 | WC
WC
HD | 30
30
24 | 8.1
8.1
6.1
0.12
0.06 | 3.3
3.3
1.8
0.03 | 270
270
190
56
42 | 120
120
87
169
190 | 42
42
30
348
440 | 8.8
8.8
7.3
298
320 | 754
754
675
1600
819 | 0
0
20 | 610
610
300
364
910 | 50
50
34
273
360 | 0.1
0.1
0.2
0.3
0.7 | | 0.33
0.33
0.16 | 1510
1510
1010
2390
2710 | 1200
1200
830
835
890 | 550
550
280
180 | 7
7
7
47
42 | 0.5
0.5
0.5
5.2
6.4 | 2220
2220
1500
3650 | 11
11
11
23 | | | | 133-047-20ABDC
133-047-20ABDC
133-047-20ABDC
133-047-20ABDC
133-047-20ABDC | 0 - 0
0 - 0 | 02/20/86
02/21/86
04/10/86
06/05/86
09/18/86 | MC
HD | 14 | 0.25
0.59
0.08
0.03
0.08 | 0.2
0.24
0.33
0.03 | 119
123
130
34.3
51 | 130
139
130
133
100 | 339
326
340
385
290 | 271
252
230
272
180 | 796
772
634
518 | 0
10
0 | 903
892
970
815
610 | 283
310
367
240 | 0.7
0.9
0.5
0.5 | 0.5 | 2.94
2.5
3.32
2.5 | 2440
2510
2330
1730 | 834
880
860
634
540 | 230
110 | 47
45
39
57
45 | 5.1
4.8
5
6.7
5.4 | | | | | | 133-047-20ABDC
133-047-20ABDC
133-047-20ABDC
133-047-20ABDC
133-047-20ABDC | 0 - 0
0 - 0 | 11/19/86
01/13/87
02/12/87
03/13/87
10/07/87 | MD
MD
MD | | 0
0
0.2
0.5 | | 91
106
102
110
68 | 88
81
76
91
119 | 287
302
307
327
335 | 183
185
210
230
198 | 625
644
588
788
829 | | 734
651
593
537
527 | 239
205
186
235
252 | | | | | | | | | | | | | | 133-047-20ABDC
133-047-20ABDC
133-047-20ABDC
133-047-20ABDC
133-047-20ABDC | 0 - 0
0 - 0
0 - 0
0 - 0
0 - 0 | 01/29/88
03/30/88 | MD
MD
MD | 9.1 | 7.7
2.5
0 | 0.01 | 112
106
195
180
83 | 119
114
132
111
100 | 340
349
383
305
370 | 208
233
258
153
300 | 846
1080
441
729
634 | 0 | 919
757
1059
866
910 | 303
239
268
217
250 | 1.1 | 3 8
3 2 | 0.15 | 2370 | 620 | 99 | 45 | 6.5 | 3225 | 7 | | | | 133-047-20ABDC
133-047-20ABDC
133-047-20ABDC
133-047-20ABDC
133-047-20ABDC | 0 - 0
0 - 0
0 - 0
0 - 0
0 - 0 | 09/06/88
10/06/88
11/08/88 | MD
MD
MD | | 0.3
0.3
0
1.1 | · | 89
80
67
81
110 | 173
120
108
123
145 |
473
297
239
298
368 | 352
205
67
135
191 | 761
846
795
618
611 | | 960
225
538
895
1054 | 338
586
193
228
263 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | | | | | | | | | 8 | | | | | | 8 | | | | | | | | | * B | | | | |-----|---|---|--|----------------------------|------------------|-------------------------------------|------------------------------|-----------------------------------|---------------------------------|---------------------------------|------------------------------------|--------------------------------------|-------------|----------------------------------|---------------------------------|--------------------------|-----------------------|-----------------------------|---------------------------|------------------------------|-----------------|----------------------|--------------------|----------------------|---------------|----| Screened | | | l ←— | | | | | | - | (milli | grams | per lite | r)——— | | | | | | → | | | Spec | | | | | Location | Interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | к | нсо3 | ∞_3 | SO ₄ | CI | F | NO ₃ | В | TDS | Hardnes
CaCO ₃ | ss as
NCH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) | рН | | | 133-047-20ABDC
133-047-20ABDC
133-047-20ABDC
133-047-20ABDC
133-047-20ABDC | 0 - 0
0 - 0
0 - 0 | 03/27/89 | MD
MD
MD | | 1.4
22
0
0 | | 76
184
129
169
196 | 90
113
101
91
100 | 288
172
265
278
287 | 208
124
177
202
199 | 597
515
493
839
694 | | 993
1151
690
633
541 | 223
21
163
176
194 | 0
0
0
0 | 9 9
0
0
0 | | | | | | | | | _ | | | 133-047-20ABDC
133-047-20ABDC
133-047-20ABDC
133-047-20ABDC
133-047-20ABDC | 0-0
0-0
0-0
0-0
0-0 | 06/29/89
08/09/89
09/06/89 | MD | 18 | 0.31
100
1.3
0 | 0.03 | 110
128
75
40
74 | 100
102
128
117
157 | 280
284
393
450
305 | 220
198
230
265
225 | 1070
1130
1348
1218 | 0 | 450
440
146
123
202 | 200
185
251
248
234 | 0.8 | 1
0
0 | 2.6 | 1910 | 690 | 0 | 39 | 4.6 | 2710 | 22 | | | | 133-047-20ABDC
133-047-20ABDC
133-047-20ABDC
133-047-20ABDC
133-047-20ABDC | 0 - 0
0 - 0
0 - 0
0 - 0
0 - 0 | 12/28/89
02/06/90
03/21/90 | MD
MD
MD | | 0.8
0.9
0
1.1
48 | | 49
84
88
104
105 | 108
123
100
105
148 | 307
305
334
312
366 | 244
243
290
284
261 | 1075
1025
968
1114 | | 172
207
561
679
718 | 218
217
212
199
227 | | 138
22
15
75 | | | | | | | | | | | | 133-047-20ABDC
133-047-20ABDC
133-047-20ABDC1
133-047-20ABDC1
133-047-20ABDC1 | 278-283
278-283 | 04/25/90
06/26/90
10/16/85
04/09/86
04/09/86 | MD
WC
HD | 12
24
31 | 0.05
2.7
0.72
0.34
0.99 | 0.05
0.17
0.16
0.23 | 80
82
120
121
120 | 120
139
47
43.4
46 | 310
350
51
49.5
50 | 270
234
8.4
7.4
7.8 | 838
889
484
486
463 | 0
0
0 | 800
701
190
183
190 | 220
213
7.3
8.9 | 0.1
0.5
0.4
0.5 | 76
189
1 | 2.9
0.32
0.44
0.38 | 2300
690
652
686 | 690
490
480
490 | 7
97
110 | 39
18
18
18 | 5.1
1
1
1 | 3400
990
860 | 16
9
9 | | | | 133-047-20ABDC1
133-047-20ABDC1
133-047-20ABDC1
133-047-20ABDC1
133-047-20ABDC1 | 278-283
278-283 | 06/30/86
11/21/86
12/29/86
01/28/87
02/26/87 | MD | 28 | 0.34
6
0
0
0.2 | 0.2 | 120
132
125
152
130 | 46
47
46
48
49 | 51
66
52
95
58 | 8.4
9
8.8
9
8.5 | 456
504
483
490
441 | 0 | 190
234
209
209
208 | 11
8
8.4
8.8
8.1 | 0.4 | 0.2 | 0.42 | 681 | 490 | 120 | 18 | 1 | 1040 | 11 | | | 281 | 133-047-20ABDC1
133-047-20ABDC1
133-047-20ABDC1
133-047-20ABDC1
133-047-20ABDC1 | 278-283
278-283
278-283 | 03/24/87
03/24/87
09/09/87
12/04/87
03/10/88 | MD | 8.8 | 0.06
0.5
1.09
0 | 0.15 | 120
134
163
171
151 | 47
46
49
47
46 | 51
54
66
55
46 | 8.8
8.9
8.6
8.5
8.5 | 460
441
483
497
449 | 0 | 190
202
198
203
191 | 11
8.5
13
8.5
7.9 | 0.5 | 1 | 0.28 | 666 | 490 | 120 | 18 | 1 | 893 | 7.8 | | | | 133-047-20ABDC1
133-047-20ABDC1
133-047-20ABDC1
133-047-20ABDC1
133-047-20ABDC1 | 278-283
278-283
278-283 | 04/19/88
10/06/88
01/26/89
02/26/89
03/28/89 | MD
MD | 19 | 0.01
0.3
0
0.4
0.1 | 0.06 | 120
123
127
132
128 | 47
44
43
47
47 | 5 2
4 6
4 5
3 5
5 1 | 9
8.3
8.9
8.6
9.2 | 487
437
558
513
493 | 0 | 200
188
191
177
175 | 12
8
12
8.3
9 | 0.6
0
0
0 | 1
0
0
0 | 0.23 | 701 | 490 | 94 | 18 | 1 | 1040 | 11 | | | | 133-047-20ABDC1
133-047-20ABDC1
133-047-20ABDC1
133-047-20ABDC1
133-047-20ABDC1 | 278-283
278-283
278-283 | 04/26/89
06/05/89
06/28/89
06/28/89
08/02/89 | MD | 28 | 0.3
0
0
0.05 | 0.16 | 130
131
132
120
131 | 49
49
48
47
49 | 48
61
57
50
55 | 9.7
9.8
8.7
8.4
12.5 | 510
469
590
473
403 | 0 | 176
180
175
170
184 | 9
10
8.9
14
8.4 | 0 0 0 0 0 | 0
0
0
1 | 0.37 | 672 | 490 | 110 | 18 | 1 | 1140 | 11 | | | | 133-047-20ABDC1
133-047-20ABDC1
133-047-20ABDC1
133-047-20ABDC1
133-047-20ABDC1 | 278-283
278-283
278-283 | 09/07/89
10/10/89
11/07/89
12/27/89
02/06/90 | MD
MD
MD
MD
MD | | 0
0.4
0.1
0.3
0.2 | | 116
125
125
136
124 | 44
45
44
46
44 | 55
52
51 | 11.3
14
10.3
14.8
13.7 | 421
465
492
453
517 | | 175
180
177
186
183 | 9.1
8.8
9
9.2
8.6 | | 0 | | | | | | | | | | | | 133-047-20ABDC1
133-047-20ABDC1
133-047-20ABDC1
133-047-20ABDC2
133-047-20ABDC2 | 278-283
278-283
128-133 | 03/21/90
04/24/90
06/25/90
10/16/85
04/09/86 | WC
MD
WC | 26
27 | 0.02
1.1
0.76
0.24 | 0.17
0.2
0.08 | 115
120
115
110
188 | 46
48
44
50
99.8 | 49
47
52
73
91 | 12.6
7
9.1
8.8
9.7 | 492
490
513
627
1220 | 0 | 183
190
188
71
60 | 11
12
8.4
34
96.3 | 0.4
0.3
0.1 | 1.9 | 0.35
0.45
0.61 | 694
690
1140 | 500
480
880 | 9 6
0 | 17
24
18 | 0.9
1.4
1.3 | 1090
1110 | 11
8 | | | | 133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2 | 128-133
128-133
128-133 | 04/09/86
06/30/86
09/24/86
09/24/86
10/23/86 | WC | 36
33
32 | 0.1
0.59
1
2 | 0.18
0.13
0.13 | 220
220
210
212.5
255 | 100
110
110
100
132 | 87
90
84
73.8
95 | 10
11
12
7
11 | 965
980
1230
843.4
1149 | 0
0
0 | 65
62
65
66.9 | 88
92
89
89.6
101 | 0.2
0.1
0.1 | 0.2 | 0.62
0.77
0.68 | 1080
1100
1210 | 960
1000
980 | 170
200
0 | 16
16
16 | 1.2
1.3
1.2 | 1600
1975
2100 | 9
10
10 | | | | 133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2 | 128-133
128-133
128-133 | 11/21/86
12/29/86
01/28/87
02/26/87
03/24/87 | MD
MD
MD
MD
WC | 19 | 8.6
0.2
0.5
0.2
0.09 | 0.13 | 225
221
254
240
240 | 105
117
117
118
120 | 87
122 | 10.9
11.5
11.7
10.9 | 1098
1018
1295
1097
1130 | 0 | 77
47
42
47
53 | 90
118
119
125
110 | 0.1 | 1 | 0.44 | 1200 | 1100 | 170 | 14 | 1.1 | 1760 | 8.1 | | | | | Screened | | | I ← | | | | | | | —(milliq | grams | per lite | r) | | | | | | > | | | Spec | | |-----|--|-------------------------------|--|----------------------------|----------------------|--------------------------------------|--------------------------------------|-----------------------------------|---------------------------------|------------------------------|--------------------------------------|--------------------------------------|-------------|-----------------------------------|---------------------------------|--------------------------|----------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|--------------------------|--------------------------|----------------------------|-----------------| | | Location | interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | κ | н∞з | ∞₃ | SO ₄ | CI | F | NO ₃ | В | TDS | Hardner
CaCO ₃ | SS BUS
NCH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) p⊦ | | | 133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2 | 128-133
128-133
128-133 | 03/24/87
07/22/87
09/09/87
10/06/87
11/05/87 | MC
MD
MD | 30 | 0.4
0.03
0.03
0.2
0.03 | 0.06 | 266
91
103
109
108 | 123
44
38
34
33 | 100
70
79
74
79 | 12.3
6.9
7
7
6.9 | 1082
541
507
459
497 | 0 | 44
57
57
71
58 |
115
28
23
21
21 | 0.4 | 0.5 | 0.3 | 595 | 410 | 0 | 27 | 1.5 | 1100 | 10 | | | 133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2 | 128-133
128-133
128-133 | 12/04/87
01/14/88
02/17/88
03/10/88
04/19/88 | MD
MD
MD | | 0.2 | | 110
107
97
100
104 | 34
32
32
34
34 | 75
68
66
63
64 | 6.7
6.9
7.2
6.9
7.3 | 497
497
477
484
531 | | 52
52
55
55
52 | 18
17
19
18
19 | 0 | 0 | | | | | | | | v | | | 133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2 | 128-133
128-133
128-133 | 04/19/88
05/24/88
06/30/88
07/29/88
09/06/88 | MD
MD
MD | 22 | 0.04
0.2
0.3
0.2
0.1 | 0.01 | 75
120
205
213
184 | 35
52
109
115
94 | 96 | 7.3
8
11.1
11.2
10.3 | 501
682
884
914
1017 | 0 | 56
51
45
46
40 | 21
39
105
117
88 | 0.5
0
0
0 | 1
0
0
0 | 0.32 | 535 | 330 | 0 | 31 | 1.7 | 850 | 10 | | | 133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2 | 128-133
128-133
128-133 | 10/06/88
11/08/88
12/14/88
01/26/89
02/26/89 | MD
MD
MD | | 0.2
0.3
1.3
0 | | 95
121
240
250
253 | 47
57
114
118
117 | 89 | 7.6
8.4
12.7
12.1
11.8 | 566
660
1325
1439
1371 | | 49
49
45
43 | 33
44
129
120
115 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | 133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2 | 128-133
128-133
128-133 | 03/28/89
04/26/89
06/05/89
06/28/89
06/28/89 | MD | 32 | 0.2
0.4
0.7
0.3
0.82 | 0.13 | 261
259
266
258
240 | 123
126
127
128
130 | 108 | 13
13.6
14.3
11.9 | 1191
1224
1059
1175
1240 | 0 | 39
39
38
37
44 | 126
129
121
124
120 | 0
0
0
0
0.2 | 0
0
0
0 | 0.62 | 1290 | 1100 | 120 | 15 | 1.2 | 2270 | 11 | | 282 | 133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2 | 128-133
128-133
128-133 | 08/02/89
09/07/89
10/10/89
11/07/89
12/27/89 | MD
MD
MD
MD | | 0
0.4
0.6
0.1
0.5 | | 269
219
232
206
277 | 130
119
123
121
131 | 100
98
99 | 14.6
13.5
15.6
12.9
15.8 | 968
1053
921
1119
943 | | 35
36
44
41
42 | 125
122
130
121
137 | 0 | 0 | | | | | | | | | | | 133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2
133-047-20ABDC2 | 128-133
128-133
128-133 | 02/06/90
03/21/90
04/24/90
04/24/90
06/25/90 | MD
MD | 3 0 | 0.3
0.1
0.05 | 0.11 | 236
224
220
220
240 | 118
127
131
140
136 | 94
94
90 | 14.8
13.6
12.4
11
12.6 | 1163
1098
1293
1170
1245 | 0 | 47
47
38
45
38 | 124
124
128
130
129 | 0.1 | 0
1
0 | 0.57 | 1240 | 1100 | 170 | 15 | 1.2 | 2200 | 11 | | | 133-047-20ABDC3
133-047-20ABDC3
133-047-20ABDC3
133-047-20ABDC3
133-047-20ABDC3 | 67-72
67-72
67-72 | 10/16/85
04/09/86
04/09/86
04/10/86
07/01/86 | WC
WC | 24
32
30
30 | 1.2
1.74
1.9
2
2.3 | 0.51
0.68
0.77
0.74
0.63 | 200
271
260
250
240 | 170
175
170
170
160 | 29
29.6
29
28
24 | 5.7
6.8
6.6
5.8
6.5 | 595
706
685
633
601 | 0
0
0 | 590
564
600
630
650 | 110
195
170
160
120 | 0.2
0.1
0.2
0.2 | 0.2
1
1
1 | 0.13
0.25
0.13
0.11
0.14 | 1420
1590
1610
1590
1530 | 1200
1400
1300
1300
1300 | 710
790
800
770 | 5
4
4
4 | 0.4
0.3
0.4
0.3 | 1900 | 8 | | | 133-047-20ABDC3
133-047-20ABDC3
133-047-20ABDC3
133-047-20ABDC3
133-047-20ABDC3 | 67-72
67-72
67-72 | 09/24/86
09/24/86
10/23/86
11/21/86
12/29/86 | MD
MD
MD | 28 | 2.9
4.7
5
4.9
2.2 | 0.66 | 260
254.1
227
170
213 | 180
171
174
137
159 | 24
24.9
23
25
29 | 6.9
4.6
6
6.2
6.8 | 710
782
411
273
431 | 0 | 590
697.1
716
791
919 | 170
176.7
70 | 0.1 | 1 | 0.16 | 1610 | 1400 | 810 | 4 | 0.3 | 2410 | 10 | | | 133-047-20ABDC3
133-047-20ABDC3
133-047-20ABDC3
133-047-20ABDC3
133-047-20ABDC3 | 67-72
67-72
67-72 | 01/14/87
01/28/87
02/26/87
04/20/88
04/25/90 | MD
MD
WC
WC | 20
21 | 1.8
2.2
0.52
7.4 | 3.5
3.9 | 204
243
225
260
460 | 164
142
165
150
210 | 28
40
31
34
63 | 7
7.4
6.4
9.9 | 438
444
462
530
697 | 0 | 958
908
1037
870
1200 | 2.7
2.6
61
240 | 0.2 | 1 | 0.21
0.36 | 1670
2560 | 1300
2000 | 830
1400 | 5
6 | 0.4 | 3300 | 10 | | | 133-047-20ABDDA2
133-047-20ABDDA2
133-047-20ABDDA3
133-047-20ABDDA3
133-047-20ABDDA3 | 9-12
268-273
268-273 | 08/23/85
09/11/85
09/10/85
04/09/86
04/09/86 | WC
WC
HD
WC | 25
26
26
30 | 0.13
0.06
0.14
0.34
0.58 | 5.3
4.9
0.19
0.18
0.23 | 490
510
120
126
120 | 420
360
45
45.8
47 | 20
55
54
51.4
50 | 8.5
8.2
8.3
7 | 724
706
469
518
468 | 0 0 0 | 2300
2000
170
192
190 | 81
67
9.2
10.5 | 0.3
0.2
0.4
0.4 | 4.6
1
1
0.1 | 0.08
0.16
0.48
0.51
0.26 | 3710
3380
666
688
689 | 3000
2800
480
505
490 | 2400
2200
100 | 1
4
19
18
18 | 0.2
0.5
1.1
1 | 3800
3150
940
842 | 15
13
9 | | | 133-047-20ABDDA3
133-047-20ABDDA3
133-047-20ABDDA3
133-047-20ABDDA3
133-047-20ABDDA3 | 268-273
268-273
268-273 | 06/30/86
09/23/86
09/23/86
12/30/86
03/24/87 | WC
WC
MD
MD
WC | 29
27
32 | 0.22
1.1
1.6
0 | 0.23
0.27
0.23 | 120
130
133.4
132
130 | 48
48
48.8
48.50 | 52
53
55.2
52
53 | 8
8.4
4.9
8.1
8.1 | 462
544
570.9
502
543 | 0 | 180
180
216.4
182
170 | 15
12
11.1
11
15 | 0.2 | 0.2 | 0.47
0.45
0.25 | 681
730 | 500
520
530 | 120
76
85 | 18
18 | 1
1 | 1070
1105 | 11
14
7.5 | 0.4 1040 720 340 -(milligrams per liter)- Spec Screened Interval Date Lab | | | Screened | | | 1 | | | | | | , | (millig | grams (| per liter |) | | | | | | → 1 | | | Spec | | | |---|--|-------------------------------|--|----------------------------|----------------------|--------------------------------------|--------------------------------------|-----------------------------------|---------------------------------|------------------------------|--------------------------------------|------------------------------------|-------------|----------------------------------|----------------------------------|---------------------------------|-------------------------|--------------------------------------|-------------------------------------|----------------------------------|--------------------------|----------------------------|---------------------------------|----------------------|---------------|----| | | Location | Interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na. | к | нсо3 | ಯ್ಯ | SO4 | CI | F | NO ₃ | В | TDS | Hardner
CaCO ₃ | SE RE
NCH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) | рН | | | 133-047-20ABDDA9
133-047-20ABDDA9
133-047-20ABDDA9
133-047-20ABDDA9
133-047-20ABDDA9 | 50-55
50-55
50-55 | 09/10/85
12/09/85
04/09/86
04/09/86
04/10/86 | WC
HD
WC
WC | 22
28
30
29 | 0.05
0.27
0.06
0.24
0.12 | 0.43
0.55
0.64
0.71
0.66 | 130
140
154
140
180 | 100
120
130
120
150 | 19
14
12.9
13
17 | 3.8
3.5
3.6
3.9 | 389
407
419
408
405 | 0
0
0 | 390
520
549
520
720 | 4.3
0.6
4.7
5.1 | 0.1
0.3
0.3
0.3
0.3 | 0.2
0
1 | 0.11
0.11
0.17
0.07
0.06 | 864
1030
1060
1030
1310 | 740
840
920
840
1100 | 420
510
510
730 | 5
3
3
3 | 0.3
0.2
0.2
0.2
0.2 | 1230
1445 | 9 | | | | 133-047-20ABDDA9
133-047-20ABDDA9
133-047-20ABDDA9
133-047-20ABDDA9
133-047-20ABDDA9 | 50-55
50-55
50-55 | 07/01/86
09/23/86
09/23/86
12/29/86
04/25/90 | | 27
26
20 | 0.47
0.71
1.3
1.7
0.19 | 0.56
0.59 | 140
160
168.7
169
530 | 130
130
136
132
380 | 13
13
34.4
20
25 | 4.5
2.8
5.1
9.6 | 403
413
358.9
425
624 | 0 | 560
630
752
571
2200 | 4.5
3.1
1.4
10.3
8.9 | 0.2
0.3 | 0.9 | 0.09
0.07 | 1080
1170
3490 | 880
930
2900 | 550
600
2400 | 3 3 2 | 0.2 | 1410
1410 | 11
11 | | | | 133-047-20ABDDAB
133-047-20ABDDAB
133-047-20ABDDAB
133-047-20ABDDAB
133-047-20ABDDAB | 265-270
265-270
265-270 | 09/23/86
09/23/86
12/30/86
03/24/87
03/24/87 | WC
MD
WC
MD | 32 | 8.4
10
0.1
0.07
0.5 | 0.25 | 220
221.3
208
160
188 | 120
127
106
84
86 | 96
80 | 18
12.6
16.7
13
13.2 | 1340
1040
1037
878
779 | 0 | 57
25.1
42
57
53 | 130
128
111
54
58 | 0.2 | 1 | 0.62 | 1360
917 | 1000
750 | 0
25 | 18 | 1.5 | 2400
1330 | 10 | | | | 133-047-20ABDDAB
133-047-20ABDDAB
133-047-20ABDDAB
133-047-20ABDDAB
133-047-20ABDDAB | 265-270
265-270
265-270
 09/09/87
12/04/87
03/10/88
04/19/88
10/06/88 | MD
MD
MD
WC
MD | 22 | 0.04
0
0.1
3.2
0.2 | 0.07 | 184
172
149
120
126 | 64
55
53
56
58 | | 10
11.3
12.1
11
9.9 | 592
597
537
694
549 | 0 | 141
123
128
120
136 | 29
26
24
29
22 | 0.3 | 1 0 | 0.3 | 779 | 530 | o | 23 | 1.4 | 1080 | 9 | | | | 133-047-20ABDDAB
133-047-20ABDDAB
133-047-20ABDDAB
133-047-20ABDDAB
133-047-20ABDDAB | 265-270
265-270
265-270 | 01/26/89
02/26/89
03/28/89
04/26/89
06/05/89 | MD
MD
MD
MD
MD | | 0 . 6
0 . 2
1
0 . 2 | | 127
139
130
130
131 | 56
64
63
65
64 | 60
72
68 | 11.6
10.8
11.4
10.1
10.8 | 722
699
653
667
554 | | 135
136
139
141
111 | 29
23
24
24
22 | 0
0
0
0 | 0 0 0 | | | | | | | | | | |) | 133-047-20ABDDAB
133-047-20ABDDAB
133-047-20ABDDAB
133-047-20ABDDAB
133-047-20ABDDAB | 265-270
265-270
265-270 | 06/28/89
06/28/89
08/03/89
09/07/89
10/10/89 | MD
WC
MD
MD
MD | 29 | 0.03 | 0.19 | 133
120
132
131
137 | 63
60
60
53
57 | 71
71
69 | 10.1
10
9.8
10.4
13.5 | 630
598
517
540
552 | 0 | 138
140
155
146
142 | 23
26
20
20
21 | 0.3 | 0
1
0 | 0.43 | 753 | 550 | 57 | 22 | 1.3 | 1330 | 9 | | | | 133-047-20ABDDAB
133-047-20ABDDAB
133-047-20ABDDAB
133-047-20ABDDAB
133-047-20ABDDAB | 265-270
265-270
265-270 | 11/07/89
12/27/89
02/06/90
03/21/90
04/24/90 | MD
MD
MD
WC | 31 | 0.6
0.3
0.3
1
0.02 | 0.22 | 131
140
129
117
120 | 52
54
53
55
67 | 67
88 | 12.6
13.1
13.4
10.3
9.6 | 605
539
655
614
592 | 0 | 138
187
144
146
150 | 22
22
21
21
25 | 0.2 | 0
7.5 | 0.43 | 770 | 580 | 90 | 20 | 1.2 | 1245 | 9 | | | | 133-047-20ABDDAB
133-047-20ABDDB1
133-047-20ABDDB1
133-047-20ABDDB1
133-047-20ABDDB1 | 260-265
260-265
260-265 | 06/25/90
08/30/85
09/11/85
09/11/85
04/09/86 | MD
WC
WC
HD | 28
27
26 | 0.1
0.07
0.76
0.8
0.21 | 0.23
0.36
0.24
0.24 | 127
160
160
160
148 | 69
66
65
58.7 | 70
71
75
70
74.9 | 10.6
9.2
10
10
8.1 | 646
828
862
886
872 | 0
0
0 | 139
42
49
43
42 | 54
38
34
33
32.3 | 0.2
0.2
0.5
0.2 | 0
1
1
1 | 0.55
0.58
0.56
0.49 | 824
849
846
794 | 670
670
670
611 | 0
0
0 | 18
19
18
21 | 1.2
1.3
1.2
1.3 | 1380
1265
1380 | 1 1
9
9 | | | | 133-047-20ABDDB1
133-047-20ABDDB1
133-047-20ABDDB1
133-047-20ABDDB1
133-047-20ABDDB1 | 260-265
260-265
260-265 | 04/09/86
06/30/86
09/23/86
09/23/86
12/30/86 | WC
WC
WC
MD
MD | 31
30
29 | 0.52
0.44
3.9
6
0.5 | 0.28
0.28
0.33 | 150
140
160
172.4
172 | 62
60
65
68
66 | 69
73
81
75.6
80 | 8.7
9
10
6.4
9.7 | 729
722
966
990.1
927 | 0 | 48
53
24
27.9
29 | 33
31
42
40.4
43 | 0.2
0.2
0.1 | 1
1
1 | 0.37
0.6
0.7 | 763
755
893 | 630
600
670 | 32
5
0 | 19
21
21 | 1.2
1.3
1.4 | 1125
1300
1625 | 9
11
10 | | | | 133-047-20ABDDB1
133-047-20ABDDB1
133-047-20ABDDB1
133-047-20ABDDB1
133-047-20ABDDB1 | 260-265
260-265
260-265 | 03/24/87
03/24/87
09/09/87
12/04/87
03/10/88 | WC
MD
MD
MD | 8.8 | 0.06
0.5
0.03
0 | 0.17 | 120
133
167
168
144 | 48
46
49
47
44 | 53
56
70
58
45 | 8
8.1
7.8
7.9 | 471
447
483
468
468 | 0 | 190
200
199
206
190 | 14
9.3
13
8.8
8.9 | 0.4 | 1 | 0.29 | 676 | 500 | 110 | 19 | 1 | 870 | 7.8 | | | | 133-047-20ABDDB1
133-047-20ABDDB1
133-047-20ABDDB1
133-047-20ABDDB1
133-047-20ABDDB1 | 260-265
260-265
260-265 | 04/19/88
10/06/88
01/26/89
02/26/89
06/29/89 | WC
MD
MD
MD
WC | 31
28 | 1.3
0.1
0.6
0.48 | 0.08 | 120
118
127
134
120 | 46
45
43
47
46 | 51
47
46
34
50 | 8.2
8.4
8.4
8.1 | 482
463
516
514
474 | 0 | 210
201
198
191
200 | 12
8
12
7.7
10 | 0.5
0
0
0
0 | 1
0
0
0
1.1 | 0.21 | 718
698 | 490 | 94 | 18 | 1 | 1020 | 10 | | | | 133-047-20ABDDB1
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2 | 114-119
114-119
114-119 | 04/25/90
08/30/85
09/11/85
04/09/86
04/09/86 | WC
WC
HD
WC | 27
29
29
37 | 0.19
0.09
0.05
0.12
1.2 | 0.18
0.11
0.1
0.19
0.24 | 120
75
65
120
130 | 48
31
27
51
58 | 49
69
70
76.8
75 | 6.9
7.4
8.4
7
7.6 | 485
441
408
642
635 | 0 0 0 | 200
74
66
108
120 | 12
16
21
41.9
45 | 0.4
0.4
0.3 | 0.4
1
0.1
0.1 | 0.37
0.54
0.54
0.5
0.5 | 704
521
489
721
788 | 500
320
270
511
560 | 100
1
0 | 17
32
35
25
22 | 1
1.7
1.9
1.5 | 1065
775
805 | 11
11
9 | | | | Screened | | | l ← | | | | | | | (millig | grams | per lite | r) | | | | | | } | | | S | | | |--|-------------------------------|--|----------------------------|----------------------|----------------------------------|---------------------------|-----------------------------------|---------------------------------|-------------------------------|---------------------------------|-----------------------------------|----------------|-------------------------------------|----------------------------------|---------------------------------|------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------|---------------------------|---------------------------------|------------------------|----------------|----| | Location | interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | K | нсо3 | ∞ ₃ | SO ₄ | CI | F | NO ₃ | В | TDS | Hardne
CaCO ₃ | ess as
NCH | %
Na | SAR | Spec
Cond
(µmho) | Temp
(∞C) | рΗ | | 133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2 | 114-119
114-119
114-119 | 06/30/86
09/23/86
09/23/86
10/23/86
11/21/86 | MD | 3 4
3 1 | 0.55
0.58
0.6
3 | 0.18
0.15 | 140
150
152.7
166
127 | 66
69
68.5
72
54 | 77
72
63.3
73
98 | 5.3 | 647
729
683
769
734 | 0 | 130
160
148.3
153
116 | 60
71
68.9
71
48 | 0.2 | 0.2 | 0.59
0.52 | 836
923 | 620
660 | 91
61 | 21
19 | 1.3 | 1430
1670 | 11
10 | | | 133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2 | 114-119
114-119
114-119 | 12/30/86
01/28/87
02/26/87
03/24/87
03/24/87 | MD
MD
WC
MD | 17 | 0.1
0.2
0.06
0.4 | 0.1 | 120
155
134
120
141 | 52
60
58
57
57 | 72
76
68
70
76 | 7.8 | 599
644
638
627
598 | 0 | 82
94
95
110
100 | 46
62
59
59 | 0.4 | 1 | 0.32 | 752 | 530 | 20 | 22 | 1.3 | 1059 | 8.3 | | | 133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2 | 114-119
114-119
114-119 | 07/22/87
09/09/87
10/06/87
11/05/87
12/04/87 | WC
MD
MD
MD
MD | 32 | 0.24
0.06
0.4
0.04 | 0.09 | 78
105
107
110
110 | 34
35
32
32
33 | 69
82
70
80
78 | 6.5
6.6
6.6 | 470
489
459
482
497 | 0 | 60
57
60
57
54 | 21
21
19
18
16 | 0.4 | 0.6 | 0.25 | 534 | 330 | 0 | 30 | 1.6 | 930 | 9 | | | 133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2 | 114-119
114-119
114-119 | 01/14/88
02/17/88
03/10/88
04/19/88
04/19/88 | MD
MD
MD
MD
WC | 28 | 0
0
0.1
0
0.66 | 0.07 | 107
98
99
103
76 | 31
31
32
33
34 | 71
64
62
62
70 | 7.1 | 482
479
487
503
471 | 0 | 55
57
55
58
68 | 17
17
17
19
15 | 0.6 | 0 | 0.35 | 532 | 330 | 0 | 31 | 1.7 | 935 | 11 | | | 133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2 | 114-119
114-119
114-119 | 05/24/88
06/30/88
07/29/88
09/06/88
10/06/88 | MD
MD
MD
MD
MD | | 0 . 2
0 . 1
0 . 1
0 . 1 | | 87
101
133
86
78 | 35
44
63
36
34 | 70
81
78
75
64 | 6.6
7.2
8.1
6.8
6.8 | 494
533
644
538
472 | | 61
75
112
60
59 | 23
36
72
24
21 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | 133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2 | 114-119
114-119
114-119 | 11/08/88
12/14/88
01/26/89
02/26/89
03/28/89 | MD
MD
MD
MD
MD | | 1.3
0.1
0
1.5
0.4 | | 82
95
112
129
143 | 34
38
45
52
61 | 64
63
65
59
76 | 6.5
9
7.7
7.6
8.9 | 510
565
633
638
667 | | 56
65
85
88
102 | 21
29
44
48
65 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | 133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2 | 114-119
114-119
114-119 | 04/26/89
06/05/89
06/28/89
06/28/89
08/02/89 |
MD
MD
MD
WC
MD | 31 | 0.3
1.2
0
0.15 | 0.17 | 149
181
156
140
156 | 67
80
67
63
68 | 69
89
82
70
78 | 8 | 715
616
675
666
552 | 0 | 106
133
108
110
112 | 73
92
74
70
75 | 0
0
0
0.4 | 0
0
0
1 | 0.43 | 822 | 610 | 63 | 20 | 1.2 | 1430 | 10 | | | 133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2 | 114-119
114-119
114-119 | 09/07/89
10/10/89
11/07/89
12/27/89
02/06/90 | MD
MD
MD
MD
MD | | 0
0.2
0.6
0.2
0.3 | | 177
172
176
189
180 | 74
76
76
77
77 | 81 | | 653
611
774
610
746 | | 132
135
138
139
148 | 106
100
102
103
108 | | 0 | | | | | | 21 | | | | | 133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB2
133-047-20ABDDB3 | 114-119
114-119
114-119 | 03/21/90
04/24/90
04/24/90
06/25/90
08/30/85 | MD
WC
MD
WC | 31
34 | 0.2
0.35
0.2
1.4 | 0.17 | 169
149
160
158
280 | 84
73
75
77
160 | 75
73
69
75
78 | 10.8
8.8
7.3
9.1 | 706
774
744
676
671 | 0 | 155
137
150
154
820 | 113
91
94
97
92 | 0.3 | 1
0
1 | 0.44 | 956
1810 | 710
1400 | 98
810 | 17
11 | 1.1 | 1570
2200 | 11
12 | | | 133-047-20ABDDB3
133-047-20ABDDB3
133-047-20ABDDB3
133-047-20ABDDB3
133-047-20ABDDB3 | 36-41
36-41
36-41 | 09/11/85
04/09/86
04/09/86
07/01/86
09/23/86 | WC
WC
WC | 26
32
30
29 | 5.3
6.17
5.7
4.5
4.1 | 1.73
1.8
1.7
1.8 | 350
351
340
320
350 | 210
212
200
210
220 | 80
111
100
90
110 | 12
11.6
11
12
13 | 803
877
852
831
905 | 0
0
0 | 970
1050
1000
1000 | 110
138
120
120
120 | 0.1
0.1
0.1
0.1
0.1 | 1
1
1 | 0.65
0.74
0.68
0.71
1.3 | 2160
2310
2230
2200
2300 | 1700
1750
1700
1700
1800 | 970
980
1000 | 9
12
11
10
12 | 0.8
1.2
1.1
0.9
1.1 | 2610
2850
3200 | 10
12
8 | | | 133-047-20ABDDB3
133-047-20ABDDB3
133-047-20ABDDD
133-047-20ABDDD
133-047-20ABCC1 | 36-41
7.2-9.6
7.2-9.6 | 09/23/86
10/23/86
09/05/85
09/12/85
08/29/69 | MD
WC
WC | 26
26
26 | 6.1
11
0.17
0.6
1.1 | 8.4
8.9
0.13 | 329
330
530
580
78 | 208
259
190
270
28 | 96.4
103
53
80
68 | 7.8
12
11
12
6.4 | 782.7
744
401
489
369 | 0 0 | 1238
1313
1700
1900
137 | 103.9
111
110
170
15 | 0.3
0.4
0.6 | 1
1
1 | 0.14
0.27
0.22 | 2830
3290
543 | 2100
2600
309 | 1800
2200
6 | 5
6
32 | 0.5
0.7
1.7 | 3250
2880
860 | 16
15
10 | | | 133-047-20ACC1
133-047-20ACC3
133-047-20ACC3
133-047-20ACC3 | 23-26
23-26 | 09/02/69
09/07/75
12/02/75
02/16/84 | WC
WC
HD | 30
12 | 1.9
0.08 | 0.14
0.25 | 87
160
392 | 32
170
165 | 89
30
16.5 | 6.5
6.1 | 448
390
361
375 | 0
0
0 | 128
770 | 21
2.1 | 0.8 | 0.2 | 0.3 | 618
1340 | 348
1100 | 0
780 | 3 5
6 | 2.1 | 980 | 10 | | | 133-047-20ACC3 | | 11/01/85 | WC | 24 | 2.9 | 0.95 | 410 | 180 | 22 | 6.2 | 415 | 0 | 1400
1200 | 34.7
64 | 0.4 | 0.2 | 0.2 | 2200
2120 | 1660
1800 | 1400 | 3 | 0.2 | 2200 | 10 | | | | | | | I ← — | | | | | | | (millig | grams | per liter |)——— | | | | | | } | | | Spec | | | |--|--|--|----------------|----------------------------------|--------------------------------------|--|-----------------------------------|----------------------------------|------------------------------|--|--|------------------|--------------------------------------|--------------------------------|---------------------------------|-------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------|----------------------------|---------------------------------|-----------------------------|--------------------|----| | Location | Screened
Interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | κ | нсо _з | ∞₃ | so ₄ | CI | F | NO ₃ | В | TDS | Hardner
CaCO ₃ | ss as
NOH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) p | рН | | 133-047-20ACC3
133-047-20ACC3
133-047-20ACC3
133-047-20ACC3
133-047-20ACC3 | 23-26
23-26
23-26 | 04/09/86
04/09/86
04/20/86
06/28/89
04/25/96 | WC
WC | 17
13
15
15 | 52.4
59
67
46
61 | 0.93
0.99
0.92
0.92
0.95 | 392
370
380
420
400 | 167
160
160
160
160 | 18.1
20
22
17
20 | 4.9
5.1
5.9
5.1
5.4 | 328
330
290
395
400 | 0
0
0 | 1290
1200
1200
1200
1100 | 96
89
130
140
150 | 0.3
0.3
0.4
0.3 | 0.1
1
1
1
1 | 0.3
0.14
0.14
0.16
0.15 | 2130
2090
2120
2200
2110 | 1670
1600
1600
1700
1700 | 1300
1400
1400
1300 | 2
3
3
2
3 | 0.2
0.2
0.2
0.2
0.2 | 2700
2840
2600 | 8
12
9 | | | 133-047-20ACD2
133-047-20ACD2
133-047-20ADB
133-047-20ADB2
133-047-20ADB2 | 24-30
254-260
265-270 | 09/07/75
12/02/75
09/05/65
04/09/86
04/20/88 | WC
WC
WC | 12
29
33
26 | 0.5
0.7
0.58
0.07 | 0.08
0.17
0.17
0.12 | 320
125
73
120 | 170
33
30
46 | 25
52
73
52 | 5.9
6.7
6.2
8.4 | 330
391
484
466
475 | 0
0
0 | 1200
170
54
190 | 3.4
9.7
19
11 | 0.5
0.4
0.5
0.5 | 2
2.5
5.8
1 | 0.47
0.19
0.49
0.25 | 1900
667
526
689 | 1500
448
310
490 | 1200
51
0
99 | 3
20
34
18 | 0.3
1.1
1.8
1 | 1060
790
1020 | 10
9
9 | | | 133-047-20ADB2
133-047-20ADB2
133-047-20ADB2
133-047-20ADB2
133-047-20ADB3 | 265-270
265-270
265-270 | 06/29/88
06/29/89
04/24/96
10/25/89 | WC
WC | 27
29
27
24
31 | 0.59
0.26
0.31
0.43
0.12 | 0.14
0.16
0.21
0.16
0.27 | 120
120
120
120
110 | 47
46
47
46
45 | 53
51
53
51
48 | 8
8.1
8.4
8.4
7.6 | 478
477
486
486
468 | 0
0
0
0 | 200
180
200
190
190 | 13
12
13
8.1
11 | 0.5
0.4
0.5
0.5 | 3.3
3.9
1
0.1 | 0.48
0.34
0.35
0.33
0.37 | 710
686
713
690
675 | 490
490
490
490 | 100
98
95
90
76 | 19
18
19
18 | 1
1
1
1 | 1191
1120
910
970 | 11
9
8
9 | | | 133-047-20ADB3
133-047-20ADB3
133-047-20ADB3
133-047-20ADB3
133-047-20ADB3 | 115-120
115-120
115-120 | 04/20/88
06/29/88
06/29/88
04/24/98
01/25/88 | WC
WC | 27
28
30
29
24 | 0.19
0.46
0.34
0.11
0.43 | 0.11
0.13
0.14
0.16
0.16 | 65
72
70
71
120 | 30
30
29
29
46 | 70
74
69
72
51 | 6.9
6.7
6.8
6.9 | 465
426
458
472
486 | 0 0 0 0 | 59
58
49
59 | 17
20
19
18
8.1 | 0.6
0.6
0.5
0.5 | 1
6.2
4.6 | 0.34
0.53
0.4
0.42
0.33 | 506
501
506
524
690 | 290
300
290
300
490 | 0
0
0
0
90 | 34
34
33
34
18 | 1.8
1.9
1.8
1.8 | 945
855
910 | 8
11
9
8 | | | 133-047-20ADB3
133-047-20ADD
133-047-20ADD
133-047-20ADD
133-047-20ADD | 250-290
250-290
250-290 | 10/31/8!
07/29/74
06/30/76
09/18/86
09/18/86 | WC
WC | 30
19
28
27
27 | 0.5
1.4
2.1
1.7 | 0.13
0.14
0.18
0.18
0.16 | 73
110
110
120
110 | 31
47
45
54
43 | 72
51
53
59
55 | 7
6.4
6.4
5.6
5.3 | 477
490
489
508
329 | 0
0
0
0 | 54
180
170
120
160 | 17
10
10
17
14 | 0.5
0.7
0.4
0.5 | 1
1
6.7
6.7 | 0.43
0.35
0.49
0.32
0.16 | 520
668
668
662
586 | 310
470
460
520
450 | 0
68
59
100
180 | 33
19
20
20
21 | 1.8
1
1.1
1.1
1.1 | 633
1080
1020
1020 | 9
9 | | | 133-047-20ADD
133-047-20ADD
N 133-047-20ADD
M 133-047-20ADD
M 133-047-20ADD | 250-290
250-290
250-290 | 08/31/83
02/16/84
03/28/84
08/28/84
06/19/89 | HD
HD
WC | 31
30
28 | 1.5
0.24
1.59
1 | 0.16
0.12
0.15
0.15
0.15 | 110
102
100
110
100 | 43
38
38
43
41 | 57
53
57
58
59 | 8.7
6.7
7
8.5
7.5 | 470
482
483
469
468 | 0
0 | 160
153
155
160
150 | 12
10.8
11.2
11
10 | 0.5
0.6
0.5 | 0.1
0.6
4.8 | 0.28
0.39
0.3 | 657
602
607
654
634 | 450
413
408
450
420 | 67
67
35 | 21
22
23
21
23 | 1.2
1.1
1.2
1.2 | 1020 | 12
9
10 | | | 133-047-20ADD
133-047-20ADD
133-047-20ADD
133-047-20ADD
133-047-20ADD | 250-290
250-290
250-290 | 08/01/8
12/12/8
04/10/8
04/10/8
06/30/8 | HD
HD
WC | 29
33
30 | 1.5
1.33
0.2
1.6
1.5 | 0.15
0.13
0.12
0.16
0.14 | 110
104
112
110
110 | 41
40.2
41.9
42
42 | 57
55.6
58.8
58 | 8.1
6.8
6.8
7.2 |
477
475
495
470
481 | 0 | 160
141
155
160
150 | 12
11
13.9
13 | 0.5
0.5
0.5
0.5 | 1
0.6
0.2 | 0.29
0.52
0.42
0.48 | 656
593
633
658
653 | 440
426
453
450
450 | 52
62
53 | 21
22
22
22
22 | 1.2
1.2
1.2
1.2 | 9 4 5 | 10 | | | 133-047-20ADD
133-047-20ADD | | 03/23/8 | | 35 | 1.5 | 0.16 | 110
134 | 43
39 | 5 5
4 9 | 8.1 | 486
514 | 0 | 160
157 | 10
10.6 | 0.5 | 1 | | 663 | 450 | 53 | 21 | 1.1 | 870 | 8.4 | | | 133-047-20ADD
133-047-20ADD | 250-290
250-290 | 04/19/8
02/26/8 | WC
MD | 25 | 1.3 | 0.11 | 100
120 | 42 | 5 6
5 0 | 7.9 | 475
503 | 0 | 160
146 | 13
11 | 0 | 0.2 | 0.22 | 640
634 | 420
420 | 33
32 | 22 | 1.2 | 1040
1143 | 10
9 | | | 133-047-20ADD
133-047-20ADD
133-047-20ADD2
133-047-20ADD2
133-047-20ADD2
133-047-20ADD2 | 250-290
268-273
268-273
268-273 | 06/29/8
04/23/9
10/31/8
04/09/8
06/30/8
09/24/8 | WC
WC
WC | 28
29
28
33
30
28 | 1.4
1.2
1.3
0.57 | 0.14
0.15
0.15
0.17
0.14
0.14 | 100
110
110
110
110 | 41
42
45
42
43
42 | 55
57
56
59
55 | 7.8
7.7
8.3
7.7
8.1
8.7 | 471
482
485
475
472
479 | 0 0 0 0 0 | 150
160
170
160
150 | 12
13
11
15
17 | 0.5
0.5
0.5
0.3
0.3 | 0.5
1
1
0.9 | 0.36
0.37
0.41
0.48
0.47 | 659
670
661
652
645 | 450
460
450
450
450 | 52
62
58
65
55 | 21
21
21
22
22 | 1.2
1.2
1.1
1.2 | 1065
665
1040
1040 | 8
7
10
10 | | | 133-047-20ADD2
133-047-20ADD2
133-047-20ADD2
133-047-20ADD2
133-047-20ADD2 | 268-273
268-273
268-273 | 09/24/8
07/22/8
09/09/8
12/04/8
03/10/8 | WC
MD
MD | 30 | 0.3
1.1
0.09
0 | 0.14 | 121.6
110
141
138
121 | 43.8
42
43
38
36 | 55.3
57
75
64
61 | 8
7.7
8.1
7.9
7.8 | 386.3
482
489
489
453 | 0 | 196.3
150
134
129
122 | 11
13
14
14
14.6 | 0.5 | 5.9 | 0.26 | 655 | 450 | 52 | 21 | 1.2 | 1060 | 9 | | | 133-047-20ADD2
133-047-20ADD2
133-047-20ADD2
133-047-20ADD2
133-047-20ADD2 | 268-273
268-273
268-273 | 04/20/8
06/30/8
10/06/8
01/26/8
02/26/8 | WC
MD
MD | 27
27 | 0.58
0.97
0.1
0 | 0.09 | 93
98
99
110
113 | 38
40
39
39
42 | 66
63
55
49
64 | 8.1
7.8
8
8.4
8.9 | 473
437
498
538
515 | 0 | 120
140
143
140
143 | 15
17
13
16
12 | 0.6
0.5
0 | | 0.32 | 603
615 | 390
410 | 1
51 | 26
25 | 1.5 | 940 | 9 | | | 133-047-20ADD2
133-047-20ADD2
133-047-20ADD2
133-047-20ADD3
133-047-20ADD3 | 268-273
268-273
122-127 | 06/29/8
04/25/9
04/25/9
10/25/8
04/09/8 | WC
WC
WC | 28
29
28
27
34 | 0.04
0.15
0.11
0.56
0.37 | 0.13
0.14
0.16
0.11
0.19 | 99
74
100
72
71 | 41
33
41
30
31 | 57
73
58
73
71 | 7.5
8
7
7.1 | 475
429
484
475
464 | 0
0
0
0 | 140
110
140
55
58 | 14
20
13
17
20 | 0.5
0.5
0.3
0.5 | 6.4 | 0.34
0.44
0.37
0.39
0.53 | 625
565
630
520
524 | 420
320
420
300
300 | 26
0
22
0
0 | 23
33
23
34
33 | 1.2
1.8
1.2
1.8
1.8 | 1058
902
990
640 | | | remanda de la compacta compact | | | Screened | | | I | | , | | | | | (milliç | grams | per liter |) | | | | | | →I | | | Spec | | | |----|--|-------------------------------|--|----------------------------|----------------------------|--------------------------------------|--------------------------------------|---------------------------------|---------------------------------|------------------------------|--------------------------------------|--------------------------------------|-------------------|--------------------------------------|-------------------------------|--------------------------|------------------------|-------------------------------------|----------------------------------|----------------------------------|---------------------------|----------------------------|---------------------------------|---------------------------|--------------------|------| | | Location | interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | K | нсо3 | ∞ ₃ | so ₄ | CI | F | NO ₃ | В | TDS | Hardnes
CaCO ₃ | ss as
NCH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) | рН | | | 133-047-20ADD3
133-047-20ADD3
133-047-20ADD3
133-047-20BAA1
133-047-20BAA1 | 122-127
23-26 | 04/20/88
06/29/89
04/25/90
09/05/75
12/02/75 | MC
MC
MC | 28
29
30
14
21 | 0.02
0.03
0.04
0.19
0.85 | 0.1
0.14
0.13
0.2
0.32 | 70
67
71
87
84 | 30
30
30
88
83 | 71
67
70
31
35 | 6.9
6.7
6.9
4.7
5.3 | 461
460
474
455
456 | 0
0
0
0 | 55
43
52
250
250 | 17
18
19
5
6.9 | 0.5
0.4
0.5
0.5 | 0.2
4.9
5.4
1 | 0.33
0.38
0.42
0.28
0.4 | 506
494
518
706
714 | 300
290
300
580
550 | 0
0
0
210
180 | 33
33
33
10
12 | 1.8
1.7
1.8
0.6
0.6 | 830
907
855 | 8
10
10 | | | | 133-047-20BAA1
133-047-20BAA1
133-047-20BAA2
133-047-20BAA2
133-047-20BAA2 | 23-26
128-134
128-134 | 01/22/76
07/18/79
09/05/75
09/18/80
08/24/83 | MC
MC
MC
MC | 25
14
21
15 | 0.43
0.4
1.3
0.08 | 0.52
0.04
0.61
0.18 | 100
91
100
74 | 41
37
17
13 | 63
54
50
49 | 30
6.2
11
13 | 624
471
481
398
329 | 0 | 170
100
62
44 | 10
12
14
10 | 0.3
0.5
0.2
0.2 | 1
1
59
0.8 | 0.33
0.39
0 | 674
554
532
382 | 420
380
320
240 | 3 4
0 | 23
23
25
30 | 1.3
1.2
1.2 | 1150
900
763 | 9
10.5 | 7.56 | | | 133-047-20BAA2
133-047-20BAA2
133-047-20BAA2
133-047-20BAA2
133-047-20BAA3 | 128-134
128-134
128-134 | 10/10/85
04/09/86
06/29/88
04/25/90
03/29/84 | WC
WC
WC
HD | 26
26
27
26 | 0.27
0.43
0.06
0.05
22.4 | 0.45
0.34
0.39
0.27
0.12 | 110
100
100
86
220 | 31
33
42
47
275 | 52
55
50
51
112 | 12
12
7.8
8
15.6 | 468
434
460
428
2120 | 0
0
0
18 | 140
130
140
130 | 7.5
10
11
10
206 | 0.4
0.4
0.4
0.3 | 0.1
1
0.5
0.1 | 0.33
0.28
0.45
0.35 | 612
582
607
588
1880 | 400
390
420
410
1680 | 19
30
45
28 | 21
23
20
21
13 | 1.1
1.2
1.1
1.1 | 945
850
930 | 9
9
11 | | | | 133-047-20BAA3
133-047-20BAA3
133-047-20BAA3
133-047-20BAA3
133-047-20BAA3 | | 04/09/86 | WC
HD
WC
MD
MD | 32
29 | 0.83
5.8
6.8
29.4
5.2 | 0.15
0.42
0.5 | 230
207
210
287
279 | 310
276
300
331
318 | 67
72.6
74
78
75 | 11
10.8
11
12.5
8.1 | 1360
1370
1340
1190
1137 | 0 | 580
639
690
1034
919 | 93
91.7
86
44
40 | 0.1
0.1
0.1 | 1.1 | 0.45
0.52
0.4 | 2000
1970
2070 | 1800
1660
1800 | 720
660 | 7
9
1 | 0.7
0.8
0.8 | 2300 | 9 | | | | 133-047-20BAA3
133-047-20BAA3
133-047-20BAA3
133-047-20BAA3
133-047-20BAA3 | 34-37
34-37
34-37 | 11/05/87
11/20/87
12/04/87
12/18/87
01/14/88 | MD
MD
MD
MD
MD | | 24
22.4
16.3
21.5
12.5 | | 284
269
286
270
246 | 291
272
236
257
253 | 71
65
68 | 13.3
14.2
12.8
16.6
15.7 | 1080
1159
1123
1483
1641 | | 839
750
761
471
277 | 38
37
33
34
32 | | | | | | | | | | | | | သွ | 133-047-20BAA3
133-047-20BAA3
133-047-20BAA3
133-047-20BAA3
133-047-20BAA3 | 34-37
34-37
34-37 | 01/29/88
02/17/88
03/10/88
03/30/88
04/19/88 | MD | | 14.6
11.5
22.1
15.1
12.3 | | 243
234
250
253
264 | 249
246
242
232
202 | 60
61
59 | 14.6
12.9
12.8
13.3
11.8 | 1372
1305
1310
1229
1536 | | 347
518
582
500
505 | 31
28
30
30
29 | 0 | 0 | | | | | | | | | | | ~ | 133-047-20BAA3
133-047-20BAA3
133-047-20BAA3
133-047-20BAA3
133-047-20BAA3 | 34-37
34-37
34-37 | 04/20/88
05/24/88
06/30/88
07/29/88
09/06/88 | MD | 31 | 11
22
7.6
12.6
20.6 | 0.94 | 210
210
172
195
204 | 190
193
196
229
229 | 67
68 | 12
10.7
11.4
11.5
11.4 | 1210
1131
1324
1357
1161 | 0 | 480
484
298
481
755 | 33
28
26
22
22 | 0.2
0
0
0 | 1
0
0
0 | 0.32 | 1630 | 1300 | 310 | 9 | 0.8 | 2150 | 10 | | | | 133-047-20BAA3
133-047-20BAA3
133-047-20BAA3
133-047-20BAA3
133-047-20BAA3 | 34-37
34-37
34-37 | 10/06/88
11/08/88
12/14/88
01/26/89
02/26/89 | MD
MD | | 33.6
45.5
46.5
0
44.1 | | 235
249
250
255
262 | 221
217
228
223
215 | 56
48 | 11
10.3
11.8
10.9
11.1 | 1026
1034
1039
1024
955 | | 838
826
837
849
887 | 21
23
25
34
26 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | | 133-047-20BAA3
133-047-20BAA3
133-047-20BAA3
133-047-20BAA3
133-047-20BAA3 | 34-37
34-37
34-37 | 03/24/89
04/27/89
06/05/89
06/29/89
06/29/89
| MD
MD | 18 | 42.6
0.7
16
21.6
22 | 2.2 | 261
297
441
459
460 | 225
364
400
406
420 | 76
80 | 11.3
15.3
15.3
14.9 | 886
1233
1225
1203
1150 | 0 | 891
1439
2012
2207
1800 | 26
23
18
16
24 | 0
0
0
0
0.1 | 0
0
0
0 | 0.37 | 3400 | 2900 | 1900 | 5 | 0.6 | 4310 | 11 | | | | 133-047-20BAA3
133-047-20BAA3
133-047-20BAA3
133-047-20BAA3
133-047-20BAA3 | 34-37
34-37
34-37 | 08/01/89
09/08/89
10/11/89
11/08/89
12/27/89 | MD
MD | | 23
14.1
40
50
49 | | 413
366
356
325
315 | 391
349
327
314
294 | 59
49
48 | 14.5
14.2
13.3
12.9
12.2 | 1145
1122
1029
1063
914 | | 1892
1733
1615
1461
1294 | 20
24
28
26
28 | 0 | 0 | | | | | | | | | | | | 133-047-20BAA3
133-047-20BAA3
133-047-20BAA3
133-047-20BAA3
133-047-20BAA3 | 34-37
34-37
34-37 | 02/07/90
03/21/90
04/24/90
04/26/90
06/25/90 | MD | 13 | 83
61
60
46
59 | 2.2 | 316
305
310
340
256 | 265
285
272
280
281 | 48
48
50 | 11.4
11.1
11
10
11.5 | 883
869
871
886
828 | 0 | 1326
1385
1335
1300
1292 | 29
32
25
29
26 | 0.1 | 0
1
0 | 0.33 | 2510 | 2000 | 1300 | 5 | 0.5 | 2900 | 10 | | | | 133-047-20BAA4
133-047-20BAA4
133-047-20BAA4
133-047-20BAA4
133-047-20BAA4 | 258-263
258-263
258-263 | 10/24/85
04/09/86
04/09/86
04/21/88
06/29/89 | WC | 24
27
24
10 | 0.09
0.72
0.46
1.7 | 0.15
0.18
0.22
0.22
0.64 | 110
113
110
110
73 | 43
43.5
43
43
8.5 | 61
64
59
59 | 9.1
8.1
8.6
9 | 478
491
467
469
238 | 0
0
0 | 190
182
190
190
61 | 10
13.6
12
10
5.4 | 0.5
0.5
0.6
0.2 | 1
0.2
3.7 | 0.37
0.5
0.3
0.26
0.12 | 690
667
682
678
303 | 450
463
450
450
220 | 69
67
22 | 22
23
22
22
15 | 1.3
1.3
1.2
1.2 | 990
930
1080
576 | 10
9
9
11 | | | | | Screened | | | ← | 30,00 | | | | | | —(millig | grams | per liter |) | · · · · · · | | | | * , * * * *** | | | | Spec | | | |-----|--|-------------------------------|--|----------------|----------------------------|--------------------------------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------|--------------------------------------|-------------|--------------------------------|---------------------------------|---------------------------------|-----------------------------------|--------------------------------------|----------------------------------|----------------------------------|-----------------------------|----------------------------|---------------------------------|------------------------------------|----------------------------|----| | | Location | Interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | K | н∞₃ | ∞₃ | SO ₄ | CI | F | NO ₃ | В | TDS | Hardnes
CaCO ₃ | 85 a.5
NCH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) | рН | | | 133-047-20BAA4
133-047-20BAACD
133-047-20BAACD
133-047-20BAACD
133-047-20BAACD | 61.7-67 | | MD
MD
MD | 16 | 0.05
7.3
10.7
2.2
0.8 | 0.51 | 110
309
376
409
388 | 32
151
205
234
215 | | 8.3
20
18.2
19.5
19.4 | 435
1867
2319
2154
2176 | 0 | 170
44
184
165
143 | 10
203
248
243
254 | 0.3
0
0
0 | 1
0
0
0 | 0.35 | 615 | 410 | 50 | 21 | 1.1 | 1000 | 9 | | | | 133-047-20BAACD
133-047-20BAACD
133-047-20BAACD
133-047-20BAACD
133-047-20BAACD | 61.7-67
61.7-67
61.7-67 | 06/29/89
07/31/89
09/05/89
01/05/90
02/06/90 | MD
MD
MD | 34 | 12
0
1.5
8
3.6 | 0.13 | 370
385
373
355
338 | 230
218
211
202
185 | 280
286
312
284
269 | | 2380
2267
2250
2274
2279 | 0 | 150
143
268
164
83 | 230
256
233
219
219 | 0.2 | 1
0
0 | 0.62 | 2500 | 1900 | 0 | 24 | 2.8 | 4250 | 10 | | | | 133-047-20BAACD
133-047-20BAACD
133-047-20BAACD
133-047-20BAACD
133-047-20BABAB1 | 61.7-67
61.7-67
61.7-67 | 04/24/90 | MD
WC
MD | 3 5
3 0 | 5.1
2.7
12
3
0.32 | 0.11 | 318
328
330
303
84 | 204
197
200
199
33 | 264
260 | 19.2
19.4
20
19.3
6.9 | 1830
2055
1900
2149
487 | 0 | 51
101
65
78
72 | 218
210
230
216
15 | 0.1 | 1
0
1.4 | 0.53 | 2090
550 | 1600
350 | 89 | 25
29 | 2.8 | 3700
950 | 9
9 | | | | 133-047-20BABAB1
133-047-20BABAB1
133-047-20BABAB1
133-047-20BABB
133-047-20BABB | 112-117
112-117
53-63 | 04/21/88
06/29/89
04/25/90
07/23/87
04/21/88 | WC
WC
WC | 25
29
30
32
28 | 0.61
0.3
0.05
0.17
0.34 | 0.23
0.21
0.12
0.27
0.09 | 79
83
83
300
130 | 34
34
34
200
56 | 66
64
65
240
70 | 7.4
7.3
7.4
16
8.2 | 481
480
495
1700
769 | 0 0 0 0 | 74
66
97
14
37 | 14
14
15
210
29 | 0.5
0.4
0.5
0.2 | 0 · 1
7 · 5
5 · 4
1
1 | 0.33
0.35
0.41
0.42
0.3 | 538
542
582
1850
739 | 340
350
350
1600
560 | 0
0
0
180 | 29
28
28
25
21 | 1.6
1.5
1.5
2.6
1.3 | 940
968
930
3500
1150 | 10
12
10
12
10 | | | | 133-047-20BABB
133-047-20BABB
133-047-20BABB
133-047-20BABB
133-047-20BABB | 53-63
53-63
53-63 | 06/30/88
02/26/89
03/24/89
04/26/89
06/05/89 | MD
MD
MD | 30 | 0.06
1.5
1.5
1.3
0.7 | 0.17 | 200
144
153
141
146 | 120
57
62
59
56 | 130
66
65
65
72 | 10
8.8
8.5
8.4
8.6 | 1080
796
806
816
802 | 0 | 23
42
33
33
29 | 110
34
37
35
36 | 0.2
0
0
0 | 1
0
0
0 | 0.49 | 1160 | 990 | 110 | 22 | 1.8 | | | | | 288 | 133-047-20BABB
133-047-20BABB
133-047-20BABB
133-047-20BABB
133-047-20BABB | 53-63
53-63
53-63 | 06/29/89
06/29/89
08/01/89
09/08/89
10/11/89 | WC
MD
MD | 31 | 0.6
1.4
0.6
0 | 0.12 | 161
150
147
144
153 | 68
65
60
58
60 | 81
71
69
75
70 | 8.6
8.8
8.6
9.7 | 857
864
812
827
880 | 0 | 27
32
25
23
28 | 40
46
37
42
43 | 0.3 | 0
1
0 | 0.42 | 833 | 640 | 0 | 19 | 1.2 | | | | | | 133-047-20BABB
133-047-20BABB
133-047-20BABB
133-047-20BABB
133-047-20BABB | 53-63
53-63
53-63 | 11/08/89
12/28/89
02/07/90
03/21/90
04/24/90 | MD
MD
MD | | 2.2
1.9
1.5
1.1 | | 154
162
153
150
169 | 57
61
61
64
74 | 72
72
74
72
74 | 10.1
10.4
10
9.8
9.8 | 868
803
889
881
1007 | | 26
29
27
28
25 | 43
44
48
50
60 | | 0 | | | | | | | | | | | | 133-047-20BABB
133-047-20BABB
133-047-20BAD1
133-047-20BAD1
133-047-20BAD1 | 53-63
255-260
255-260 | 04/24/90
06/25/90
10/16/85
04/09/86
04/09/86 | MD
WC
HD | 31
24
30 | 1.7
2.2
0.36
0.24
0.81 | 0.13
0.16
0.17
0.21 | 170
156
120
123
120 | 76
69
47
45.5
47 | 76
80
55
53.6
54 | 9.3
9.8
8.3
6.9
7.5 | 1010
950
466
495
471 | 0
0
0 | 27
23
220
200
200 | 62
58
8.3
14.6
13 | 0.3
0.5
0.5 | 1
0
1 | 0.43
0.35
0.54
0.33 | 953
715
688
706 | 740
490
494
490 | 0
110
110 | 18
19
19 | 1.2
1.1
1.1
1.1 | 1660
1250
990 | 9
10
9 | | | | 133-047-20BAD1
133-047-20BAD1
133-047-20BAD1
133-047-20BAD1
133-047-20BAD2 | 255-260
255-260
255-260 | | WC
WC | 33
26
27
30
25 | 0.04
0.04
0.65
0.23
0.07 | 0.12
0.1
0.15
0.15
0.15 | 120
120
120
120
74 | 46
47
47
47
30 | 53
54
54
52
74 | 8.4
8.5
8.4
8.6
7.7 | 449
487
476
485
476 | 0 0 0 0 | 180
210
190
200
53 | 11
10
12
13 | 0.5
0.5
0.5
0.4
0.5 | 1
1
5.8
4.8 | 0.25
0.25
0.31
0.37
0.37 | 674
717
700
716
520 | 490
490
490
490
310 | 120
94
100
96
0 | 19
19
19
18 | 1
1.1
1.1
1
1.8 | 915
1030
1145
1100
830 | 7.9
9
11
10 | | | | 133-047-20BAD2
133-047-20BAD2
133-047-20BAD2
133-047-20BAD2
133-047-20BAD2 | 135-140
135-140
135-140 | 04/09/86
04/09/86
06/30/86
09/18/86
09/18/86 | WC
WC | 33
32
32 | 0.08
0.05
0.03
0.31 | 0.1
0.13
0.1
0.13 | 69
58
72 | 28.3
29
26
30
31.2 | 72.6
73
74
73
75.8 | 6.4
7.6
7 | 480
436
282
458
464 | 0
0
0 | 55
54
58
66
61.8 | 23.4
18
19
23
16.4 | 0.2 | 0.4
0.5
0.3 | 0.58
0.46
0.6
0.66 | 494
499
415
531 | 296
290
250
300 | 2 1
0 | 35
35
38
34 | 1.8
1.9
2
1.8 | 670
610
1045 | 9
12
10 | | | | 133-047-20BAD2
133-047-20BAD2
133-047-20BAD2
133-047-20BAD2
133-047-20BAD2 | 135-140
135-140 | 11/21/86
12/19/86
01/30/87
02/26/87
03/24/87 | MD | 17 | 2.7
0.3
0.1
0 | 0.1 | 50
63
75
66
70 | 22
25
29
29
30 | 68
69
71
71. | 7.1
7.2
6.8
6.7
7.5 | 342
361
438
400
468 | 0 | 70
57
50
55
 15
16
16
17 | 0.5 | 1 | 0.35 | 502 | 300 | 0 | 34 | 1.8 | 730 | 7.8 | | | | 133-047-20BAD2
133-047-20BAD2
133-047-20BAD2
133-047-20BAD2
133-047-20BAD2 | 135-140
135-140
135-140 | 03/24/87
09/09/87
12/04/87
03/10/88
04/20/88 | MD
MD
MD | 28 | 0.2
0.14
0
0
0 | 0.06 | 83
85
104
92
69 | 30
27
29
28
29 | 70
89
72
67
71 | 7.6
6.7
6.8
6.7
7.2 | 459
398
489
470
454 | 0 | 55
61
53
54
58 | 17
19
14
17
16 | 0.6 | 1 | 0.32 | 504 | 290 | 0 | 34 | 1.8 | 790 | 9 | ٠ | | | | | | |--|-------------------------------|--|----------------------------|----------------------|-----------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------|--------------------------------------|----------------|-------------------------------------|-----------------------------------|--------------------------|---------------------------|------------------------------------|--------------------------------------|--------------------------------------|-----------------------------|----------------------------|---------------------------------|------------------------|--------------|----| | | Command | | | I | · | | | | | | —(millio | orams | per lite | r) | <u>:</u> _ | | | | | | | | | | | | Location | Screened
Interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | ĸ | нсоз | ಯ ₃ | so ₄ | CI | F | NO ₃ | В | TDS | Hardne
CaCO ₃ | es as
NOH | %
Na | SAR | Spec
Cond
(µmho) | Temp
(∞C) | pН | | 133-047-20BAD2
133-047-20BAD2
133-047-20BAD2
133-047-20BAD2
133-047-20BAD2 | 135-140
135-140
135-140 | 10/06/88
01/26/89
02/26/89
06/28/89
04/24/90 | MD
MC | 29
35 | 0.1
0.6
0.04
0.05 | 0.11 | 69
76
78
73
69 | 29
28
30
30 | 67
62
78
72
69 | 6.8
7.2
8.2
7 | 472
540
493
465
453 | 0 | 52
58
48
52
56 | 16
19
16
18 | 0
0
0
0.5 | 0
0
0
6.4
5.1 | 0.38
0.45 | 517
513 | 310
290 | 0 | 33
33 | 1.8 | 879
860 | 11 | | | 133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3 | 51-56
51-56
51-56 | 10/24/85
04/09/86
04/09/86
04/10/86
07/01/86 | HD
WC
WC | 35
42
34
39 | 2.4
22.9
29
16
28 | 0.35
0.49
0.66
1
0.43 | 350
466
500
540
470 | 220
271
310
290
290 | 220
405
420
450
400 | 22
45
44
60 | 1680
1660
1620
1340
1640 | 0 | 370
1610
1800
2100
1500 | 210
277
270
280
250 | 0.1
0.1
0.2
0.2 | 1 1 1 1 | 0.62
4.32
4.6
7.6
0.83 | 2260
3890
4220
4440
3830 | 1800
2280
2500
2500
2400 | 400
1200
1400
1000 | 21
28
26
27
26 | 2.2
3.7
3.7
3.9
3.5 | 2710
4350 | 10 | | | 133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3 | 51-56
51-56
51-56 | 09/18/86
09/18/86
10/23/86
11/21/86
12/19/86 | MD
MD
MD | 41 | 26
25.7
25
26.6
11.9 | 0.5 | 390
365
395
375
380 | 200
207
223
186
187 | 245
200 | 42 | 1940
2012
1839
2113
2158 | 0 | 500
540.7
454
175
27 | 210
200.9
212
201
217 | 0.2 | 1 | 2.2 | 2630 | 1800 | 210 | 23 | 2.7 | 3750 | 14 | | | 133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3 | 51-56
51-56
51-56 | 01/28/87
02/26/87
03/24/87
03/24/87
07/23/87 | MD
WC
MD
WC | 27
34 | 16.9
22.8
26
22.7
24 | 0.13 | 381
371
370
376
370 | 167
175
190
165
180 | 178
180 | 15.2
14.4
15
14.6
17 | 2126
2158
2150
2079
1840 | 0 | 1.6
0
5.4 | 224
222
210
219
220 | 0.2 | 1 | 0.45 | 2080
1960 | 1700
1700 | 0
160 | 19
21 | 1.9 | 2910
3700 | 8.5 | | | 133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3 | 51-56
51-56 | 09/09/87
10/06/87
11/05/87
12/04/87
01/14/88 | | | 16.6
8.3
9.6
1.2
20.4 | | 548
523
552
542
495 | 229
209
208
194
223 | 237
240
255 | 16.3
17.1
17.2
17.5
17.7 | 2168
1993
2361
2404
2181 | | 0
0
0
0 | 251
238
237
226
273 | | | | | | | | | | | | | 133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3 | 51-56
51-56 | 02/17/88
03/10/88
04/19/88
04/20/88
05/24/88 | MD
MD
WC | 31 | 16.4
2.1
16
22.1 | 0.1 | 449
440
444
350
356 | 225
217
206
200
205 | 265
267
260 | 17.5
17.4
17.5
19 | 1982
2369
1804
2070
2315 | 0 | 0
0
0
6.6
0 | 249
253
251
240
251 | 0.6 | 0
1
0 | 0.39 | 2140 | 1700 | 0 | 25 | 2.7 | 3500 | 9 | | | 133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3 | 51-56
51-56
51-56 | 06/30/88
07/29/88
09/06/88
10/06/88
11/08/88 | MD
MD | | 7.7
2.1
10.3
4.5 | | 311
327
317
336
344 | 210
212
201
198
194 | 272 | 18
18.1
17.9
18.2
17.3 | 2169
2256
2356
1980
1947 | | 0 0 0 | 246
250
278
280
274 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | 133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3 | 51-56
51-56
51-56 | 12/14/88
01/26/89
02/26/89
03/09/89
03/23/89 | MD
MD
MD
MD
MD | | 0
0
15.1
5.9
1.5 | | 339
351
496
463
392 | 205
201
283
263
219 | 303
263
298
278
258 | 17.6
19.2
19.3 | 2377
2479
2759
2800
2428 | | 0
10
451
175
0 | 272
298
262
248
239 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | 133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3 | 51~56
51-56
51-56 | 04/26/89
06/05/89
06/28/89
06/28/89
07/31/89 | MD
MD
MD
WC
MD | 40 | 2.7
0.6
16
0 | 0.38 | 427
518
488
500
420 | 257
305
304
320
273 | 308
332
333
320
315 | 22.2
21.8
24 | 2631
2532
2921
2510
2522 | 0 | 290 | 231
263
255
280
283 | 0
0
0
0.1 | 0
0
0
1 | 1.2 | 2740 | 2600 | 510 | 21 | 2.7 | 5120 | 11 | | | 133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3 | 51-56
51-56
51-56 | 09/05/89
10/09/89
11/06/89
12/27/89
02/07/90 | MD
MD
MD
MD
MD | | 0
1.8
8.5
0.3
1.5 | | 337
363
354
337
321 | 228
247
235
221
201 | | 23
20
20.3
18.8
20.2 | 2251
2213
2586
1985
2420 | | 0
0
0
0 | 296
271
248
241
237 | | 0 | | | | | | | | | | | 133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BAD3
133-047-20BADAB1 | 51-56
51-56
51-56 | 03/21/90
04/24/90
04/24/90
06/25/90
02/26/89 | MD
WC
MD | 40 | 7.2
5.8
12
1.2
3.7 | 0.19 | 381
392
410
298
280 | 279
278
280
244
150 | 348
350
330
320
264 | 22.7
29
20.1 | 1990
2085
1240
2019
1642 | 0 | 767
787
760
316
286 | 269
245
260
264
176 | 0.1 | 1
0
0 | 1.3 | 2730 | 2200 | 1200 | 25 | 3.1 | 4700 | 9 | | | 133-047-20BADAB1
133-047-20BADAB1
133-047-20BADAB1
133-047-20BADAB1
133-047-20BADAB1 | 57-62
57-62
57-62 | 03/23/89
04/26/89
06/05/89
06/28/89
06/28/89 | MD
MD
MD | 37 | 9.1
16.1
7.9
0.3
20 | 0.86 | 317
341
369
374
390 | 183
197
212
218
230 | 257
260
273
276
280 | 19.5 | 1911
2260
2114
2379
2150 | 0 | 146
77
0
0
10 | 211
250
250
259
240 | 0
0
0
0 | 0
0
0
0 | 0.64 | 2290 | 1900 | 160 | 24 | 2.8 | 4060 | 11 | | | | | | | | | | z | | | 8 | | ¥ | | | | | | | | 3) | | | | | 1 | | | | Screened | | | I (| | | | | | | —(milliç | grams | per liter |)——— | | | | | | > 1 | | | Spec | | | |-----|--|-------------------------------|--|----------------|----------------------|------------------------------------|--------------------------------------|----------------------------------|---------------------------------|---------------------------------|------------------------------------|--------------------------------------|------------------|----------------------------------|---------------------------------|-------------------|------------------------|------------------------------|---------------------------------|---------------------------------|----------------------|----------------------------|--------------------------|----------------------|----------------|----| | | Location | Interval
(f1) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | к | н∞з | ∞_3 | SO | CI | F | NO ₃ | В | TDS | Hardnes
CaCO ₃ | s as
NCH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) | рН | | | 133-047-20BADAB1
133-047-20BADAB1
133-047-20BADAB1
133-047-20BADAB1
133-047-20BADAB1 | 57-62
57-62
57-62 | 07/31/89
09/05/89
10/09/89
11/06/89
12/27/89 | MD
MD
MD | | 9.9
13.1
4.8
10.1
6.7 | | 344
288
289
308
306 |
214
189
197
196
197 | 273
283
282
282
286 | 20 | 2260
2101
1891
2226
1834 | | 0
35
119
27
148 | 251
245
244
292
258 | 0 | O | | | | | | | | | | | | 133-047-20BADAB1
133-047-20BADAB1
133-047-20BADAB1
133-047-20BADAB1
133-047-20BADAB1 | 57-62
57-62
57-62 | 02/07/90
03/21/90
04/24/90
04/24/90
06/25/90 | MD
MD
WC | 35 | 16.1
7.7
3
11
3.2 | 0.37 | 298
277
293
300
263 | 184
205
202
210
201 | 281
288
284
280
289 | 20
20
20
21
19.5 | 2053
2061
2234
1720
1888 | 0 | 144
14
0
8.2
118 | 263
265
271
260
257 | 0.1 | 0.8 | 0.85 | 1970 | 1600 | 200 | 27 | 3.1 | 3900 | 9 | | | | 133-047-20BADB
133-047-20BADB
133-047-20BADB
133-047-20BADB
133-047-20BADB | 0-0 | 01/26/89
10/10/89
11/07/89
12/28/89
04/24/90 | MD
MD
MD | | 11.7
1.4
1.2
3.8
3.2 | | 228
81
119
194
95 | 91
126
153
258
142 | 355
393
541
868
304 | 349
310
340
579
268 | 0
1661
1193
1185 | | 671
313
949
1802
342 | 308
67
323
562
183 | 0 | 9.6
65
0
231 | | | | | | | | | | | | 133-047-20BADBD1
133-047-20BADC
133-047-20BADCA1
133-047-20BADCA1
133-047-20BADCA1 | 0-0
66-76
66-76 | 02/26/89
02/21/86
02/26/89
03/23/89
04/26/89 | MD
MD | | 4.3
10.8
2.1
13.3
3.8 | 5.39 | 353
1100
246
263
253 | 181
213
144
159
154 | 255
352
147
151
144 | | 1808
693
1536
1664
1672 | | 362
787
91
22
74 | 215
447
111
124
103 | 0.2
0
0 | 3.5
0
0 | 2.12 | 3760 | 3640 | | 17 | 2.5 | | | | | | 133-047-20BADCA1
133-047-20BADCA1
133-047-20BADCA1
133-047-20BADCA1
133-047-20BADCA1 | 66-76
66-76
66-76 | 06/05/89
06/29/89
06/29/89
07/31/89
09/05/89 | MD
WC
MD | 36 | 4.3
1.8
6
3.3
4.2 | 0.22 | 245
273
250
277
266 | 148
165
170
175
170 | 161
150 | 12.2
12.9
14
13.6
14.4 | 1554
1793
1840
1661
1715 | 0 | 91
0
1.2
0
0 | 81
123
120
137
178 | 0.3 | 0
0
1
0 | 0.44 | 1660 | 1300 | 0 | 20 | 1.8 | 2740 | 10 | | | 290 | 133-047-20BADCA1
133-047-20BADCA1
133-047-20BADCA1
133-047-20BADCA1
133-047-20BADCA1 | 66-76
66-76
66-76 | 10/13/89
11/07/89
12/27/89
02/07/90
03/21/90 | MD
MD
MD | | 3.9
9.3
6
10.3
7.2 | | 287
271
272
255
265 | 183
170
171
157
165 | | | 1895
1953
1621
1830
1764 | | 0
4
18
29
33 | 145
130
121
123
120 | | 0 | | | | | | | | | | | | 133-047-20BADCA1
133-047-20BADCA1
133-047-20BADCA1
133-047-20BADCA3
133-047-20BADCA3 | 66-76
66-76
73.8-85 | 04/24/90
04/24/90
06/25/90
03/28/89
04/27/89 | MC
MD
MD | 36 | 7.7
8.8
6
16.5
11.6 | 0.2 | 241
240
223
279
304 | 164
170
161
172
181 | 150
162
156 | 13.6
14
13.6
13.2
13.8 | 1813
1580
1682
1734
2019 | 0 | 32
37
26
41
23 | 119
120
116
153
162 | 0.2 | 1
0
0
0 | 0.52 | 1560 | 1300 | 3 | 20 | 1.8 | 2800 | 9 | | | | 133-047-20BADCA3
133-047-20BADCA3
133-047-20BADCA3
133-047-20BADCA3
133-047-20BADCA3 | 73.8-85
73.8-85
73.8-85 | 06/05/89
06/29/89
06/29/89
08/09/89
09/05/89 | MD
WC
MD | 31 | 6.3
1.1
9.8
1.2
3.7 | 0.15 | 326
318
310
315
300 | 190
190
200
194
186 | 190
180
187 | 14.4
14.1
15
14.5
15.2 | 1895
2100
2119
1627 | 0 | 0
0
1 1
0
0 | 167
171
170
187
178 | 0.3 | 0
0
1
0 | 0.5 | 1960 | 1600 | 0 | 20 | 2 | 3280 | 9 | | | | 133-047-20BADCA3
133-047-20BADCA3
133-047-20BADCA3
133-047-20BADCA3
133-047-20BADCA3 | 73.8-85
73.8-85
73.8-85 | 10/11/89
11/07/89
01/04/90
02/06/90
03/21/90 | MD
MD
MD | | 7.5
11.6
5.3
10.1
9.3 | | 295
282
295
282
266 | 196
196
202
191
213 | 177 | 14.5
15.3
14.6 | 1875
2058
2083
2066
1807 | | 0 0 0 | 166
158
161
172
177 | | 0 | | | | | | | | | | | | 133-047-20BADCA3
133-047-20BADCA3
133-047-20BADCA3
133-047-20BADCD1
133-047-20BA | 73.8-85
73.8-85
53-58 | 04/24/90
04/24/90
06/25/90
04/24/90
07/29/74 | WC
MD
WC | 35
23
18 | 7.1
13
13.9
6.3
1.8 | 0.14
2.4
0.16 | 270
270
250
380
120 | 201
200
199
190
49 | 170
170
182
170
51 | 15
14.5
17 | 1973
1870
1956
1120
490 | 0
0
0 | 0
2.1
0
890
200 | 169
170
173
130 | 0.2
0.1
0.7 | 1
0
1
1 | 0.53
1.5
0.55 | 1800
2360
701 | 1500
1700
500 | 0
810
98 | 20
17
18 | 1.9 | 3200
3400 | 8
11 | | | | 133-047-20BBA
133-047-20BBA
133-047-20BBA
133-047-20BBA
133-047-20BBA | 240-300
240-300
240-300 | 12/03/75
01/21/76
06/30/76
09/18/80
08/31/83 | WC
WC | 20
27
26
30 | 1.9
2.2
1.8
1.5 | 0.15
0.18
0.14
0.14 | 110
110
110
110 | 45
47
40
44 | 54
57
58 | 9.2 | 488
481
483
432
461 | 0
0
0
0 | 170
180
160
170 | 19
25
15
12 | | 1.5
0.7
6.4
1 | 0.36
0.57
0.29
0.27 | 671
694
635
663 | 460
470
440
460 | 60
74
86
78 | 20
20
22
21 | 1.1
1.1
1.2
1.2 | 1750
1040
1050 | 9
11 | * | | | 133-047-20BBA
133-047-20BBA
133-047-20BBA
133-047-20BBA
133-047-20BBA | 240-300
240-300
240-300 | 02/16/84
03/28/84
08/28/84
06/19/85
08/02/85 | WC
WC | 30
29
28 | 0.07
1.52
0.99
1.7
1.4 | 0.13
0.14
0.14
0.14
0.14 | 105
102
110
110
110 | 38.5
39
43
43
42 | 53
55
58
56
56 | 8.6
7.7 | 485
485
471
489
471 | 0
0
0 | 161
163
160
160
170 | 11.6
11.9
14
17
12 | 0.6
0.5
0.5 | 0.1
0.5
1
1 | 0.39
0.16
0.29 | 615
617
658
667
662 | 421
415
450
450
450 | 66
51
61 | 21
22
21
21
21 | 1.1
1.2
1.2
1.1 | 11 4 0
970 | 10
10
10 | 2 | | | | | | | | | |--|---|--|----------------------------|----------------------------|-------------------------------------|--------------------------------------|---------------------------------|---------------------------------|--------------------------------|---------------------------------|------------------------------------|------------------|---------------------------------|--------------------------------|--------------------------|---------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------|----------------------------|--|-------------------------------------|---------------------|----| | | | | | | | | | | | | | | * | | | | | | | | | | | | | | | Screened
Interval | Date | Lab | I | | - | | | • | | | | per lite | r)——– | | | 0-10 | | Hardne | —→ | % | | Spec
Cond | Temp | | | Location
133-047-20BBA | (ft) | Sampled | ID | SiO2 | Fe | Mn | Ca | Mg | Na | К | HCO3 | ∞_3 | so | CI | F | NO ₃ | 8 | TDS | CaCO ₃ | NOH | Na | SAR | (µmho) | (∞C) | pН | | 133-047-20BBA
133-047-20BBA
133-047-20BBA
133-047-20BBA
133-047-20BBA | 240-300
240-300
240-300
240-300
240-300 | 04/10/86 | | 3 2
3 4
2 9 | 0.78
0.25
1.6
1.5
1.7 | 0.13
0.13
0.16
0.16
0.13 | 107
114
110
110
110 | 40.5
43.3
43
45
42 | 55.4
59.4
58
60
58 | 6.8
7.3
7.2
8.5
8.4 | 478
493
472
488
359 | 0 0 | 144
166
170
180
170 | 11.8
15.5
14
13
14 | 0.5
0.5
0.5
0.5 | 0.1
0.3
1
4.8 | 0.52
0.39
0.31 | 601
649
670
694
616 | 435
464
450
460
450 | 65
60
150 | 22
22
21
22
22 | 1.2
1.2
1.2
1.2 | 840
980 | 8.1
13 | | | 133-047-20BBA
133-047-20BBA
133-047-20BBA
133-047-20BBA
133-047-20BBA | 240-300
240-300
240-300
240-300
56-59 | 04/20/88
02/26/89
06/28/89
04/24/90
09/06/75 | WC
MD
WC
WC | 25
28
28
14 | 1.2
2.2
1.4
1
0.29 | 0.11
0.13
0.14
0.06 | 110
122
110
110
77 | 42
42
43
43 | 58
56
58
58 | 8.1
9.4
7.9
8.2
5.2 | 474
505
475
491
472 | 0
0
0 | 170
173
170
150
30 | 13
14
14
14 | 0.5
0.5
0.5 | 0
0
5.8
1
1 | 0.23
0.32
0.38
0.43 | 661
673
656
462 | 450
450
450
320 | 59
62
49 | 22
21
21
27 | 1.2
1.2
1.2
1.4 | 990
1270
1042 | 9
8
8 | | | 133-047-20BBA2
133-047-20BBA2 | | 12/02/75
01/22/76 | WC
WC | 22 | 0.9 | 0.09 | 99 | 44 | 64 | 6.9 | 570
665 | 0 | 67 | 16 | 0.4 | 1.5 | 0.32 | 603 | 430 | 0 | 24 | 1.3 | | | | | 133-047-20BBA2
133-047-20BBA2
133-047-20BBA2 | 56-59 | 09/17/80
10/31/85
04/20/88 | WC
WC | 29
32
23 | 0.5
0.17
0.36 | 0.07
0.08
0.1 | 180
140
180 | 110
160
190 | 94
58
80 | 7.1
36
28 | 973
1330
1440 | 0
0
0 | 4.5
7.4
8.6 | 37
49
83 | 0.2
0.1
0.1 | 1
1
1 | 0.23
0.39
0.4 | 943
1140
1300 | 910
1010
1200 | 110
0
51 | 18
11
12 | 1.4
0.8
1 | 2000
1750
2360
 9
9
9 | | | 133-047-20BBA2
133-047-20BBA3
133-047-20BBA3
133-047-20BBA3
133-047-20BBA3 | 23-26
23-26
23-26 | 04/24/90
09/06/75
12/02/75
01/22/76
09/17/80 | WC
WC
WC | 27
13
20 | 0.26
1.7
0.31 | 0.15
0.34
0.22 | 190
150
110 | 190
200
150 | 79
77
79 | 28
5.5
5.9 | 1430
1040
815
1090 | 0
0
0 | 62
140
150 | 67
61
74 | | 1
1
1.5 | 0.5
0.43
0.36 | 1350
1140
993 | 1300
1200
880 | 84
350
210 | 12
12
16 | $\begin{smallmatrix}1\\1\\1\\2\end{smallmatrix}$ | 2300 | 8 | | | 133-047-20BBA4
133-047-20BBA4 | 34-37 | 03/29/84
10/31/85 | HD
WC | 29 | 15.3 | 0.15 | 69.5
76 | 110
120 | 42
35 | 3.9 | 616
664 | 0 | 91
174 | 10
24.1 | . 0.5 | | 0.06 | 683
751 | 710
626 | 200 | 10 | 0.6 | 1400 | 10 | | | 133-047-20BBA4
133-047-20BBA4
133-047-20BBA4 | 34-37
34-37 | 04/09/86
04/09/86
04/20/88 | WC
WC | 29
14 | 5.83
4.9
23 | 0.18
0.22
0.17 | 98.9
100
150 | 140
140
180 | 35.3
39
28 | 4.2
3.7
4.1
4.2 | 527
709
678
702 | 0
0
0 | 300
316
330
550 | 3
16
13
8.9 | 0.5
0.4
0.5
0.2 | 5.4
4.2
1 | 0.25
0.34
0.26
0.24 | 830
964
999
1310 | 680
821
830
1100 | 250
270
540 | 10
9
9
5 | 0.6
0.5
0.6 | 1200 | 9
10 | | | 133-047-20BBA4
133-047-20BBA4
133-047-20BBA5
133-047-20BBA5
133-047-20BBA5 | 34-37
38-41
38-41 | 06/28/89
04/24/90
10/31/85
04/09/86
04/09/86 | WC
WC
WC
HD
WC | 9.7
7.6
35 | 90
58
0.14
4.39
4.8 | 1.2
0.92
0.29
0.05
0.26 | 290
210
280
193
260 | 340
310
130
147
160 | 53
45
93
95.5
93 | 7.6
6.5
12
11.2 | 811
668
1250
1560
1380 | 0
0
0 | 1400
1300
68
95
110 | 14
14
70
109
84 | 0.1
0.1
0.2
0.1 | 1
1
1 | 0.21
0.24
0.52
0.76
0.63 | 2610
2280
1310
1420
1440 | 2100
1800
1200
1090
1300 | 1500
1300
210 | 5
5
14
16
13 | 0.5
0.5
1.2
1.3 | 3610
2900
1435 | 11
10
8 | | | 133-047-20BBA5
133-047-20BBA5
133-047-20BBA5
133-047-20BBA6
133-047-20BBA6 | 38-41
38-41
268-273 | 04/21/88
06/29/89
04/25/90
10/31/85
04/09/86 | WC
WC
WC | 31
29
28
28
32 | 7.9
5.4
4.8
0.51
1.2 | 0.32
0.32
0.32
0.14
0.17 | 320
260
250
120
120 | 170
150
170
47
47 | 82
53
67
56
57 | 13
9.9
10
8.3
7.8 | 1340
804
755
484
476 | 5
0
0
0 | 360
680
840
200
200 | 74
10
11
9.8
13 | 0.5 | 7.5
1
3.6 | 0.37
0.26
0.32
0.38
0.34 | 1720
1600
1760
710
717 | 1500
1300
1300
490
490 | 390
610
710
97
100 | 11
8
10
20
20 | 0.9
0.6
0.8
1.1 | 2575
2240
2300
1005
990 | 10
12
9
9 | | | 133-047-20BBA6
133-047-20BBA6
133-047-20BBA6 | 268-273 | 07/01/86
09/18/86
09/18/86 | WC
WC
MD | 29
30 | 0.55
1.5
1.3 | 0.14
0.16 | 120
120
129.8 | 47
46
46.2 | 56
53
54.3 | 8.6
8
10.1 | 473
487
493.7 | 0 | 210
190
237.8 | 13
12
9.4 | 0.4
0.5 | 0
1 | 0.49
0.55 | 718
703 | 490
490 | 110
90 | 19
19 | 1.1 | 1100
1030 | 11
10 | | | 133-047-20BBA6
133-047-20BBA6 | 268-273 | 12/29/86
03/24/87 | MD
WC | 11 | 0.05 | 0.13 | 110 | 40 | 5 6
6 2 | 8.1 | 477
474 | 0 | 135
130 | 12.3 | 0.5 | 1 | 0.3 | 605 | 410 | 26 | 24 | 1.3 | 842 | 7.6 | | | 133-047-20BBA6
133-047-20BBA6
133-047-20BBA6
133-047-20BBA6
133-047-20BBA6 | 268-273
268-273
268-273 | 03/24/87
09/09/87
12/04/87
03/10/88
04/20/88 | MD
MD
MD
WC | 29 | 0.2
0.08
0
0 | 0.11 | 114
148
155
137
100 | 40
44
41
40
42 | 59
75
62
55
57 | 8.6
8.1
7.9
7.9
8.2 | 465
483
489
436
469 | 0 | 134
146
154
157
170 | 14
16
13
13.7
16 | 0.6 | 1 | 0.29 | 656 | 420 | 38 | 22 | 1.2 | 980 | 8 | | | 133-047-20BBA6
133-047-20BBA6
133-047-20BBA6
133-047-20BBA6
133-047-20BBA6 | 268-273
268-273
268-273 | 10/06/88
01/26/89
02/26/89
06/28/89
04/24/90 | MD
MD
MC
WC | 28
29 | 0.1
0
0.5
0.1
0.98 | 0.13
0.14 | 107
118
119
110
110 | 41
40
44
43
42 | 56
50
72
58
61 | 8.1
8.5
9.2
8.2
8.2 | 478
506
514
475
486 | 0 | 171
165
156
170
170 | 11
16
12
14
16 | | 0
0
0
1.5
3.8 | 0.31 | 668
681 | 450
450 | 62
49 | 21
22 | 1.2 | 1108
1050 | 11 | | | 133-047-20BBA7
133-047-20BBA7
133-047-20BBA7
133-047-20BBA7
133-047-20BBA7 | 110-115
110-115
110-115
110-115
110-115 | 07/01/86
03/24/87 | MC
MC
MC | 30
34
31
34
32 | 0.4
0.86
0.61
0.62
0.23 | 0.14
0.18
0.14
0.11 | 79
78
79
75
75 | 32
32
32
30
31 | 71
69
69
68
67 | 7.6
6.8
7.7
7.2
7.3 | 487
475
476
459
470 | 0
0
0
0 | 61
63
71
11
64 | 16
18
18
20 | 0.4
0.5
0.4
0.5 | 1
15
0
1 | 0.42
0.45
0.59
0.32
0.32 | 540
552
543
474
529 | 330
330
330
310
310 | 0 0 0 | 31
31
31
32
31 | 1.7
1.6
1.6
1.7 | 840
815
870
731 | 9
9
11
7.5 | | | 133-047-20BBA7
133-047-20BBA7
133-047-20BBA8
133-047-20BBA8
133-047-20BBA8 | 58-63 | | WC
WC
HD
WC | 30
31
33 | 0.68
0.18
0.07
0.21
2 | 0.13
0.15
0.13
0.05
0.17 | 78
75
230
159
210 | 31
31
160
92.7
100 | 71
69
110
93.7 | 7.1
7.4
12
8.6
9.1 | 470
485
1430
1360
1240 | 0 0 0 | 56
61
26
8 | 19
18
67
44.6
34 | 0.5
0.5
0.1 | 6.2
5.5
1
0.1 | 0.37
0.43
0.47
0.56
0.52 | 532
538
1340
1070
1100 | 320
310
1200
778
940 | 0
0
60 | 3 2
3 2
1 6 | 1.7
1.7
1.4
1.5 | 918
890
2050 | 11
9
10 | | | | | Screened | | | ← | | | | | | | —(millig | grams | per liter |)——— | | | | | | >1 | | | Spec | | | |-------|--|-------------------------------|--|----------------------------|----------------------------|--------------------------------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------------|--------------------------------------|------------------|--|---------------------------------|---------------------------------|-------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------|----------------------------|---------------------------|--------------------------------------|--------------------------|----| | | Location | interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | к | н∞₃ | ∞₃ | so ₄ | CI | F | NO ₃ | В | TDS | Hardnes
CaCO ₃ | ssas
NCH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) | рН | | | 133-047-20BBA8
133-047-20BBA8
133-047-20BBA8
133-047-20BBA8
133-047-20BBA8 | | 03/24/87 | WC
WC
MD | 32
17
32 | 0.21
2.4
0.86
0.7
1.9 | 0.15
0.08
0.08 | 200
220
200
186
200 | 97
110
100
83
93 | 97
100
93
84
86 | 11
11
10
9.9
9.6 | 1160
1340
1240
1080
1150 | 0
0
0 | 23
3.3
9.9
17
14 | 33
42
36
28
34 | 0.1
0.3
0 | 1
1
0
0 | 0.61
0.39
0.32 | 1070
1170
1090 | 900
1000
910 | 0
0
0 | 19
18
18 | 1.4
1.4
1.3 | 2100
1800
1650 | 7.9
10 | | | | 133-047-20BBA8
133-047-20BBA8
133-047-20BBA8
133-047-20BBA8
133-047-20BBA8 | 58-63 | | MD
WC
MD
MD | 31 | 1.6
1.2
1.4
1.1 | 0.1 | 199
186
200
214
215 | 95
81
100
101
101 | | 9.8
9.5
11
10.2
10.2 | 1273
1074
1230
1180
1018 | 0 | 10
10
33
0
4.9 | 34
28
37
33
35 | 0
0.2
0
0 | 0
0
0.3
0 | 0.47 | 1110 | 910 | 0 | 18 | 1.3 | 2150 | 10 | | | in in | 133-047-20BBA8
133-047-20BBA8
133-047-20BBA8
133-047-20BBA8
133-047-20BBA8 | 58-63
58-63 | 09/08/89
10/11/89
11/08/89
12/28/89
02/07/90 | MD
MD
MD
MD
MD | | 1.1
3
2.2
1.8
2.4 | | 210
212
199
194
187 | 98
96
87
85
85 | 98
92
87 | 11.3
11.5
11
11.1
10.7 | 1070
1086
1282
1024
1215 | | 5.5
5.4
6.7
11
9.9 | 36
35
32
32
29 | | 0 | | | | | | | | | | | | 133-047-20BBA8
133-047-20BBA8
133-047-20BBA8
133-047-20BBA8
133-047-20BBABB1 | 58-63
58-63
58-63 | 03/21/90
04/24/90
04/24/90
06/25/90
07/21/87 | WC | 3 0
3 0 | 1.6
1.1
2.8
3.3
0.42 | 0.1 | 172
192
210
189
81 | 86
94
110
96
32 | 90
97 | 10.3
10.7
11
10.8
6.9 | 989
1174
1400
1265
482 | 0 | 12.6
6
8.2
0
66 | 29
32
39
33
16 | 0.1 | 1
0
0.7 | 0.47 | 1200
538 | 980
330 | 0 | 18
30 | 1.3 | 1900
920 | 9
9 | | | | 133-047-20BBABB1
133-047-20BBABB1
133-047-20BBABB1
133-047-20BBABB2
133-047-20BBABB2 | 113-118
113-118
58-63 | 04/20/88
06/29/89
04/25/90
07/23/87
04/21/88 | WC
WC
WC | 27
29
29
29
24 |
0.01
0.03
0.19
0.02
0.01 | 0.09
0.13
0.14
0.07
0.18 | 81
80
80
76
77 | 33
33
32
40
40 | 65
66
64
63
62 | 7.4
7.2
7.1
8.9
6.5 | 480
476
495
416
450 | 0
0
0
0 | 73
74
66
94
100 | 17
17
16
24
22 | | 7.4
4.7
9.6
2.1 | 0.28
0.37
0.39
0.35
0.31 | 541
549
544
550
556 | 340
340
330
350
360 | 0
0
0
13 | 29
29
29
27
27 | 1.5
1.6
1.5
1.5 | 825
996
905
930
920 | 10
12
9
12
9 | | | 292 | 133-047-20BBABB2
133-047-20BBABB2
133-047-20BBABB2
133-047-20BBBAB1
133-047-20BBBAB1 | 58-63
58-63
298-303 | 02/26/89
06/29/89
04/25/90
07/22/87
10/20/87 | MD
WC
WC
WC | 26
26
28
29 | 0.3
0.03
0.05
0.18
0.03 | 0.23
0.21
0.18
0.19 | 89
79
79
120
120 | 42
41
40
44
45 | 63
65
64
66
65 | 6.7
6.3
6.3
7.9
8.3 | 480
445
466
476
423 | 0
0
0 | 105
110
100
200
210 | 21
22
23
15
15 | 0.2
0.3
0.5
0.5 | 0
13
8.4
0
4.9 | 0.35
0.38
0.25
0.41 | 582
578
716
706 | 370
360
480
480 | 1
0
91
140 | 27
27
23
22 | 1.5
1.5
1.3
1.3 | 1042
940
1140
1308 | 10
9
9
7 | | | | 133-047-20BBBAB1
133-047-20BBBAB1
133-047-20BBBAB1
133-047-20BBBAB2
133-047-20BBBAB2 | 298-303
298-303
193-198 | 04/21/88
06/29/89
04/25/90
07/22/87
10/20/87 | MC
MC
MC | 26
26
27
30
28 | 0.77
0.8
0.38
0.76
0.02 | 0.32
0.28
0.14
0.15
0.16 | 110
110
110
120
120 | 44
45
44
46
46 | 62
64
63
54
50 | 8.5
8.6
8.6
7.7
8 | 475
473
487
483
374 | 0
0
0
0 | 200
200
200
200
200
200 | 15
16
16
12
11 | 0.6 | 0.2
5.5
3.8
0.5 | 0.27
0.34
0.4
0.19
0.27 | 702
710
714
710
653 | 460
460
460
490
490 | 66
72
57
93
180 | 22
23
23
19
18 | 1.3
1.3
1.3
1.1 | 1025
1130
1125
1140
1092 | 10
11
9
9 | | | | 133-047-20BBBAB2
133-047-20BBBAB2
133-047-20BBBAB2
133-047-20BBBAB3
133-047-20BBBAB3 | 193-198
193-198
118-123 | 04/21/88
06/29/89
04/25/90
07/22/87
04/21/88 | WC
WC
WC | 30
29
30
31
31 | 0.01
1.2
0.36
0.36
0.99 | 0.13
0.15
0.15
0.13
0.11 | 110
120
120
81
77 | 45
47
46
32
32 | 50
53
52
68
64 | 8.1
8.3
6.9
7.2 | 475
476
487
484
475 | . 0
0
0 | 200
190
200
65
67 | 12
12
12
16
15 | 0.6
0.5
0.5
0.4
0.6 | 0
5.9
4.2
0.3
1.1 | 0.22
0.31
0.38
0.23
0.3 | 690
701
714
539
530 | 460
490
490
330
320 | 70
100
90
0 | 19
19
18
30
29 | 1
1
1
1.6
1.6 | 975
1186
1090
930
845 | 10
11
9
9 | | | | 133-047-20BBBAB3
133-047-20BBBAB3
133-047-20BBBAB4
133-047-20BBBAB4
133-047-20BBBAB4 | 118-123
78-83
78-83 | 06/29/89
04/25/90
07/22/87
04/21/88
06/29/89 | WC
WC
WC
WC | 30
30
31
30
30 | 0.9
0.13
0.11
0.02
0.04 | 0.12
0.12
0.1
0.12
0.1 | 79
78
74
71
75 | 32
32
32
31
32 | 68
66
69
66
74 | 7.3
7.4
6.3
6.7
6.5 | 478
489
463
467
467 | 0
0
0
0 | 65
66
56
56
78 | 17
17
18
16
19 | 0.5 | 8.2
6
0.9
0.1
8.9 | 0.36
0.42
0.22
0.3
0.36 | 543
545
516
508
554 | 330
330
320
300
320 | 0
0
0
0 | 30
30
32
31
33 | 1.6
1.6
1.7
1.7 | 1041
895
900
818
1074 | 10
9
9
9 | | | | 133-047-20BBBAB4
133-047-20BBBAB5
133-047-20BBBAB5
133-047-20BBBAB5
133-047-20BBBAB5 | 43-53
43-53
43-53 | 04/25/90
07/22/87
04/21/88
06/29/88
02/26/89 | WC
WC
WC
MD | 31
28
27
25 | 0.31
0.04
1.4
3
2.3 | 0.12
0.14
0.12
0.14 | 74
180
310
380
433 | 32
100
160
200
221 | 68
160
190
240
253 | 6.6
8.4
10
11
11.3 | 476
458
422
413
475 | 0
0
0 | 58
720
1400
1800
1996 | 17
76
91
110 | 0.5
0.2
0.3
0.3 | 5.6
1
0.1
18
0 | 0.45
0.26
0.31
0.53 | 528
1500
2400
2990 | 320
860
1400
1800 | 0
490
1100
1400 | 31
29
22
23 | 1.7
2.4
2.2
2.4 | 850
2450
2900 | 9
9
10 | | | | 133-047-20BBBAB5
133-047-20BBBAB5
133-047-20BBD1
133-047-20BBD1
133-047-20BBD1 | 43-53
42-45
42-45 | 06/29/89
04/25/90
03/29/84
10/31/85
04/09/86 | WC
HD
WC
HD | 28
25
35 | 2.4
4.2
43
2.6
18.5 | 0.2
0.25
0.11
0.12
0.1 | 470
520
240
280
225 | 270
310
250
310
259 | 290
310
112
120
120 | 12
13
26.4
14
12.3 | 384
442
2100
2130
2240 | 0 | 2300
2600
4
2.5
4 | 110
120
197
240
222 | 0.2
0.2
0.2
0.1 | 25
29
1 | 0.39
0.42
0.6
0.66 | 3700
4150
1860
2060
1950 | 2300
2600
1630
1960
1630 | 2000
2200
210 | 22
21
13
12
14 | 2.6
2.6
1.2
1.2 | 4540
4600
2150 | 10
9
10 | | | | 133-047-20BBD1
133-047-20BBD1
133-047-20BBD1
133-047-20BBD1
133-047-20BBD1 | 42-45
42-45
42-45 | 04/09/86
03/24/87
03/24/87
09/09/87
12/04/87 | WC
WC
MD
MD | 39
4.5
8.5 | 22
0.62
5.4
54.3
20.9 | 0.19
0.07
0.08 | 270
50
61
272
255 | 290
62
73
263
205 | | 13
28
24
12.2
10.2 | 2230
315
369
1715
1612 | 0
0
0 | 1.6
130
150
0
38 | 220
13
19
137
96 | 0.2
0.1
0.1 | 1
21
19 | 0.64
0.21
0.23 | 2080
480
562 | 1900
380
450 | 39
120
150 | 12
7
8 | 1.2
0.3
0.4 | 755
875 | 9.1 | | | | | | | | 14 | | | | pac : a | | | —{milli | arams | per liter) | . | | | | | | →I | | | Spec | | | |--|------------------------------|--|-------------------------|----------------------------|------------------|-------------------------------------|--------------------------------------|---------------------------------|---------------------------------|-------------------|--------------------------------------|--------------------------------------|----------------|--------------------------------------|---------------------------------|--------------------------|--|------------------------------|------|--------------------------------------|-------------------|----------------------|-------------------|------------------------|----------------|----| | Location | Screened
Interval
(ft) | Date
Sampled | Lat
I IC | | SiO ₂ | Fe | Mn | Ca | Mg | Na | К | | ∞ ₃ | so ₄ | CI | F | NO ₃ | В | TDS | Hardness
CaCO ₃ | ss as
NCH | %
Na | | Spec
Cond
(µmho) | Temp
) (∞C) | рН | | 133-047-20BBD1
133-047-20BBD1
133-047-20BBD1
133-047-20BBD1
133-047-20BBD1 | 42-45
42-45
42-45 | 5 03/10/8
5 04/20/8
5 10/06/8
5 01/26/8
5 02/26/8 | 88 WG
88 MI
89 MI | MD
WC
MD
MD
MD | 28 | 16.5
21
35
0
29.4 | 0.14 | 204
180
249
313
301 | 200
190
214
236
216 | | 10 | 1292
1160
913
780
730 | 0 | 230
380
1002
1333
1305 | 69
54
42
40
34 | 0.2
0
0
0 | 1
0
0
0 | 0.45 | 1520 | 1200 | 280 | 13 | 1.1 | 2250 | 8 | | | 133-047-20BBD1
133-047-20BBD1
133-047-20BBD1
133-047-20BBD1
133-047-20BBD1 | 42-45
42-45
42-45 | 5 03/23/8
5 04/26/8
5 06/05/8
5 06/28/8
5 06/29/8 | 89 M1
89 M1
89 W | MD
MD
MD
WC
MD | 25 | 30.8
35.5
32.6
27
33.2 | 0.38 | 307
310
293
260
284 | 226
233
209
200
204 | 121
113
100 | 11.1
11
11.1
11
11.1 | 687
727
731
715
753 | 0 | 1337
1369
1150
1100
1152 | 48
38
30
37
31 | 0
0
0
0.2 | 0
0
0
1 | 0.44 | 2110 | 1500 | 890 | 13 | 1.1 | 2850 | 9 | | | 133-047-20BBD1
133-047-20BBD1
133-047-20BBD1
133-047-20BBD1
133-047-20BBD1 | 42-45
42-45
42-45 | 5 08/01/8
5 09/05/8
5 10/13/8
5 11/08/8
5 12/28/8 | 89 M
89 M | MD
MD
MD
MD
MD | | 34
25
29
35
31.7 | | 291
274
278
288
302 | 209
196
208
216
218 | 113
108
108 | 11.2
12.2
12.6
12.7
12.2 | 733
743
718
747
717 | | 1180
1119
1156
1225
1243 | 34
30
35
31
34 | 0 | 0 | | | | | | | | | | | 133-047-20BBD1
133-047-20BBD1
133-047-20BBD1
133-047-20BBD1
133-047-20BBD1 | 42-45
42-45
42-45 | 5 02/07/5
5 03/21/5
5 04/24/5
5 04/24/5
5 06/25/5 | /90 M
/90 M
/90 W | MD
MD
MD
WC
MD | 25 | 37.3
33
25.1
35
37.8 | 0.32 | 280
269
274
280
245 | 194
214
204
210
202 | 107
107
100 | | 730
645
643
628
616 | | 1228
1271
1252
1200
1213 | 3 Q
3 3
2 6
3 1
2 2 | 0.2 | 0
1
0 | 0.42 | | 1600 | 1000 | | 1.1 | | ı 9 | | | 133-047-20BCA
133-047-20BCA
133-047-20BCA
133-047-20BCA
133-047-20BCA | 42-45
42-45
42-45 | 5 03/29/8
5 10/31/8
5 04/09/8
5 04/09/8
5 03/24/8 | /85 W
/86 H
/86 W | HD
WC
HD
WC
WC | 30
31
32 | 35.2
2.3
20.3
20
27 | 0.21
0.13
0.09
0.19
0.16 |
238
230
205
230
220 | 141
150 | 94
98.5
97 | $9.7 \\ 10$ | 1640
1480
1620
1610
1410 | 0 | 3.3
1
3.3
56 | 107
79
99.6
79
100 | 0.2
0.2
0.3
0.2 | $\begin{smallmatrix}1\\0.4\\1\\1\end{smallmatrix}$ | 0.46
0.62
0.48
0.34 | 1360 | 1190
1200
1090
1200
1100 | . 0
0
0 | 18
15
16
15 | 1.2
1.3
1.2 | 2000 | | | | 133-047-20BCA N 133-047-20BCA O 133-047-20BCA U 133-047-20BCA 133-047-20BCA | 42-45
42-45
42-45 | 09/09/1
5 10/06/1
5 11/05/1
5 12/04/1
5 01/14/1 | /87 M
/87 M
/87 M | MD
MD
MD
MD
MD | | 25.4
25
15.2
17.7
20.7 | | 307
310
320
324
351 | | 237
111 | | 1002
984
1080
1080
1051 | | 494
477
421
414
515 | 129
102
97
101
102 | | | | | | | | | | | | | 133-047-20BCA
133-047-20BCA
133-047-20BCA
133-047-20BCA
133-047-20BCA | 42-45
42-45
42-45 | 15 02/17/1
15 03/10/1
15 04/19/1
15 04/20/1
15 05/24/1 | /88 M
/88 M
/88 W | MD
MD
WC
MD | 22 | 23.5
26.1
12.5
1.7
21.1 | 0.1 | 314
324
342
280
285 | 156 | | 9.9
13.1
11 | 921
1083
980
879
1005 | 0 | 537
537
526
600
562 | 96
94
84
89
79 | 0.2 | 0 | 0.34 | 1680 | 1300 | 600 | 13 | 1.1 | 2350 |) 9 | | | 133-047-20BCA
133-047-20BCA
133-047-20BCA
133-047-20BCA
133-047-20BCA | 42-45
42-45
42-45 | 15 06/30/15 07/29/15 09/06/15 10/06/15 11/08/1 | /88 M
/88 M
/88 M | MD
MD
MD
MD
MD | | 22.2
17.5
8.6
16.2
26.5 | | 241
245
244
259
274 | 148
143 | 86
85
78 | | 1098 | | 594
586
522
538
625 | 64
57
65
53
43 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | 133-047-20BCA
133-047-20BCA
133-047-20BCA
133-047-20BCA
133-047-20BCA | 42-45
42-45
42-45 | 15 12/14/
15 01/26/
15 02/26/
15 03/23/
15 04/26/ | /89 M
/89 M
/89 M | MD
MD
MD
MD | | 25
0
19.2
22.2
21 | | 279
280
288
295
284 | 142
137 | 71
87
90 | 11.2
10.1
10.6
10.3
10.1 | 971
1025
1023
927
874 | | 644
604
570
665
713 | 45
55
46
35
33 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | 133-047-20BCA
133-047-20BCA
133-047-20BCA
133-047-20BCA
133-047-20BCA | 42-45
42-45
42-45 | 45 06/05/
45 06/28/
45 06/29/
45 08/01/
45 09/05/ | /89 W
/89 M
/89 M | MD
WC
MD
MD
MD | 26 | 17
19
19.3
9.3
5.2 | 0.2 | 285
250
269
267
267 | 130
130 | 87
103
95 | | 890
855
891
758
918 | 0 | 645
630
611
626
608 | 33
38
32
33
30 | 0.3 | 0 | 0.5 | 1610 | 1200 | 460 | 14 | 1.1 | 2330 | 0 10 | | | 133-047-20BCA
133-047-20BCA
133-047-20BCA
133-047-20BCA
133-047-20BCA | 42-4!
42-4!
42-4! | 45 10/13/
45 11/08/
45 12/28/
45 02/07/
45 03/21/ | /89 M
/89 M
/90 M | MD
MD
MD
MD
MD | | 13.7
16
16.2
14.3
6.9 | | 281
277
278
252
220 | 135
121 | 99
97
97 | 12.3
12.1
11.8
11.4 | | | 648
643
646
625
576 | 37
29
29
31
25 | | 0 | | | | | | | | | | | 133-047-20BCA
133-047-20BCA
133-047-20BCA
133-047-20BCD1
133-047-20BCD1 | 42-4!
42-4!
38-4 | 45 04/24/
45 04/24/
45 06/25/
44 09/06/
44 12/02/ | /90 W
/90 M
/75 W | MD
WC
MD
WC
WC | 27
13
19 | 8.7
13
16.1
5.3
21 | 0.22
0.47
0.24 | 203
200
192
260
250 | 110
105
160 | 99
105
72 | 7.2 | 753
779
1260 | 0 | 536
54 | 20
24
19
42
43 | 0.3
0.5
0.5 | 0
1 | 0.56
0.47
0.04 | 1240 | 950
1300
1300 | 330
270
310 | 18
11
8 | 0.9 | ı | 0 9 | | | | | Screened | | | 1← | | | - | , | - Heren | | —(milliç | grams | per liter |) | | | | | | → | | | Spec | | | |-----|--|-----------------------------|--|----------------|----------------------|--------------------------------------|------------------------------|-----------------------------------|---------------------------------|------------------------------------|---------------------------------|--------------------------------------|------------------|--------------------------------------|---------------------------------|--------------------------|----------------------|------------------------------|---------------------------|------------------------------|--------------------|---------------------|--------------------------|---------------------------|---------------------|----| | | Location | Interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na. | κ | нсо _з | ∞₃ | SO ₄ | CI | F | NO ₃ | В | TDS | Hardner
CaCO ₃ | SE ALS
NCH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) | рΗ | | | 133-047-20BCD1
133-047-20BCD1
133-047-20BCD1
133-047-20BCD1
133-047-20BCD3 | 38-44
38-44
38-44 | 01/22/76
09/17/80
02/16/84
10/31/85
07/21/87 | WC
HD
WC | 30
32
32 | 1.2
11.4
2.2
0.28 | 0.09
0.15
0.14
0.06 | 140
106
160
67 | 150
143
250
32 | 45
42.5
100
61 | 3.2
4.6
8.3
6.3 | 801
726
815
1110
409 | 0
8
0
0 | 7
151
290
61 | 150
108
300
30 | 0.3
0.3
0.3 | 0.2
1
0.5 | 0
0.34
0.29 | 894
957
1690
492 | 970
855
1400
300 | 360
520
0 | 9
10
13
30 | 0.6
0.6
1.2
1.5 | 2100
1875
890 | 7
9
9 | | | | 133-047-20BCD3
133-047-20BCD3
133-047-20BCD3
133-047-20BCD4
133-047-20BCD4 | 130-135
130-135
36-46 | 04/20/88
06/28/89
04/24/90
07/22/87
09/09/87 | WC
WC | 28
29
32
28 | 0.65
0.02
0.13
1.9
7.3 | 0.11
0.09
0.11
0.16 | 65
66
69
220
298 | 33
33
33
180
220 | 58
60
62
39
47 | 6.9
6.7
6.8
4.5
4.9 | 407
397
416
576
622 | 0
0
0 | 87
63
53
820
823 | 31
31
31
16
16 | 0.5
0.4
0.4
0.3 | 9.7
7.7
1 | 0.31
0.39
0.42
0.05 | 510
495
501
1590 | 300
300
310
1300 | 0
0
0
820 | 29
30
30
6 | 1.5
1.5
1.5
0.5 | 820
882
870
2250 | 7
10
10
10 | | | | 133-047-20BCD4
133-047-20BCD4
133-047-20BCD4
133-047-20BCD4
133-047-20BCD4 | 36-46
36-46
36-46 | 10/06/87
11/05/87
12/04/87
01/14/88
02/17/88 | MD
MD
MD | | 12.3
10.9
8.9
10.9
8.7 | | 311
326
325
341
287 | 194
194
185
204
211 | 32
34
33
25
21 | 4.7
4.9
4.4
4.2
4.2 | 598
597
619
597
603 | | 864
906
930
975
958 | 17
16
15
16
17 | , | | | | | | | | | | | | | 133-047-20BCD4
133-047-20BCD4
133-047-20BCD4
133-047-20BCD4
133-047-20BCD4 | 36-46
36-46
36-46 | 03/10/88
04/19/88
04/20/88
05/24/88
06/30/88 | MD
WC
MD | 27 | 11.5
12.5
9.4
12.8
11.3 | 0.19 | 297
316
270
256
222 | 213
206
190
205
204 | 21
20.5
22
22
22
32 | 4.1
4.3
3.8
4.2 | 629
576
587
640
588 | 0 | 951
977
980
976
1018 | 16
21
23
19
20 | 0
0.2
0
0 | 0
1
0 | 0.12 | 1820 | 1500 | 970 | 3 | 0.2 | 2150 | 9 | | | | 133-047-20BCD4
133-047-20BCD4
133-047-20BCD4
133-047-20BCD4
133-047-20BCD4 | 36-46
36-46
36-46 | 07/29/88
09/06/88
10/06/88
11/08/88
12/14/88 | MD
MD
MD | | 10.6
11.6
15.2
17.8
17.9 | | 234
235
279
311
302 | 213
211
211
216
231 | 35
32
31
39
37 | 5.3
5.1
5.2
5.6
6.6 | 686
647
631
649
722 | | 1037
1135
1200
1313
1225 | 14
17
13
14
12 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | 294 | 133-047-20BCD4
133-047-20BCD4
133-047-20BCD4
133-047-20BCD4
133-047-20BCD4 | 36-46
36-46
36-46 | 01/26/89
02/26/89
03/23/89
04/26/89
06/05/89 | MD
MD
MD | | 0
10.4
9.3
8.1
8.5 | | 292
285
282
276
282 | 214
193
192
188
184 | 27
34
31
40
41 | 5.8
6.2
5.6
5.4
5.6 | 667
622
588
609
592 | | 1104
1064
1017
1014
1004 | 19
14
14
12
12 | 0
0
0
0 | 0
0
0
0 | | | | | | | | | | | | 133-047-20BCD4
133-047-20BCD4
133-047-20BCD4
133-047-20BCD4
133-047-20BCD4 | 36-46
36-46
36-46 | 06/28/89
06/29/89
08/01/89
09/08/89
10/13/89 | MD
MD
MD | 28 | 6.1
7.6
7.4
7.6
8.3 | 0.26 | 260
279
291
289
309 | 180
183
192
187
211 | 34
45
36
43
42 | 5.4
5.6
5.9
6.9
7.2 | 565
622
582
578
624 | 0 | 980
1012
1091
1161
1204 | 16
12
14
14
25 | 0.3 | 1
0
0 | 0.17 | 1790 | 1400 | 930 | 5 | 0.4 | 2430 | 10 | | | | 133-047-20BCD4
133-047-20BCD4
133-047-20BCD4
133-047-20BCD4
133-047-20BCD4 | 36-46
36-46
36-46 | 11/08/89
12/28/89
02/07/90
03/21/90
04/24/90 | MD
MD
MD | | 9.7
11
13.5
10.4
7.6 | | 309
325
307
277
282 | 209
218
199
204
197 | 40
41
41
42
42 | 7.3
8.6
7.1
7 | 694
718
742
711
720 | | 1166
1212
1122
1110
1067 | 15
16
22
24
18 | | 0 | | | | | | | | | | | | 133-047-20BCD4
133-047-20BCD4
133-047-20BDAB
133-047-20BDAB
133-047-20BDAB | 36-46
0-0
0-0 | 04/24/90
06/25/90
06/05/86
01/13/87
02/12/87 | MD
WC
MD | 31 | 9.2
12.6
0.34
0
2.5 | 0.28 | 290
251
71.9
656
1267 | 200
191
143
120
167 |
45
43
227
445
353 | 6.1
6.6
200
365
359 | 676
770
1340
1610
2940 | 0 | 1000
939
146
521
502 | 22
18
212
340
289 | 0.2 | 1
0
3.1 | 0.19 | 1940
1660 | 1500
769 | 990 | 6
39 | 0.5 | 2600 | 9 | | | | 133-047-20BDAB
133-047-20BDAB
133-047-20BDAB
133-047-20BDAB
133-047-20BDAB | 0 - 0
0 - 0
0 - 0 | 03/13/87
10/07/87
11/20/87
12/17/87
01/29/88 | MD
MD
MD | | 8.1
5.4
0
9.3
10.2 | | 1218
229
836
700
1199 | 179
121
184
131
128 | 492
446
443
445
361 | 443
193
401
382
420 | 4410
1279
3599
3239
3855 | | 540
692
696
699
746 | 263
330
390
358
317 | | 21 | | | | | | | | | | | | 133-047-20BDAB
133-047-20BDAB
133-047-20BDAB
133-047-20BDAB
133-047-20BDAB | 0 - 0 | 03/30/88
10/06/88
11/08/88
01/26/89
02/26/89 | MD
MD
MD | | 2.4
8
0
8.8
43 | | 1305
209
158
212
337 | 114
97
90
73
89 | 684
366
328
334
188 | 604
250
168
370
191 | 948
1138
1474 | | 1361
629
544
519
701 | 485
391
320
323
281 | 0
0
0
0 | 3 0
0
0
4.9 | | | | | | | | | | | | 133-047-20BDAB
133-047-20BDAB
133-047-20BDAB
133-047-20BDAB
133-047-20BDAB | 0 - 0
0 - 0
0 - 0 | 03/29/89
04/27/89
06/05/89
06/28/89
06/29/89 | MD
MD
WC | 23 | 6.6
121
9.4
0.72
6.8 | 0.98 | 282
773
501
440
511 | 71
143
136
130
139 | 296
429
368
320
343 | 263
358
308
310
284 | 1364
2814
1282
2430
2847 | 0 | 610
817
39
2.5 | 266
356
305
270
269 | 0
0
0
0.6 | 0
0
0
1 | 2.5 | 2700 | 1600 | 0 | 26 | 3.5 | 4570 | 21 | | | | Screened | | | ← | | | | | | | —(milli | grams | per liter | r)—— | | | | | | 1 | | | 0 | | | |--|---|--|----------------------------|----------------------------|--------------------------------------|--------------------------------------|-----------------------------------|---------------------------------|----------------------------------|---------------------------------|--------------------------------------|-------------|--------------------------------------|---------------------------------|--------------------------|--------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|----------------------------|-----------------------------|-------------------------------------|------------------------|-----| | Location | Interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | κ | нсо3 | ∞₃ | SO ₄ | CI | F | NO ₃ | В | TDS | Hardne
CaCO ₃ | NCH | %
Na | SAR | Spec
Cond
(µmho) | Temp
(∞C) | pН | | 133-047-20BDAB
133-047-20BDAB
133-047-20BDAB
133-047-20BDAB
133-047-20BDAB | 0 - 0
0 - 0
0 - 0
0 - 0
0 - 0 | 09/06/89 | MD
MD
MD | | 0
5.3
2.2
6.4 | | 265
103
170
242
541 | 140
120
94
101
101 | 432
511
409
401
333 | 284
313
297
335
384 | 1571
1809 | | 0
0
202
172
243 | 296
283
360
315
265 | 0 | 7 8
1 8 | | | | | | | | | | | 133-047-20BDAB
133-047-20BDAB
133-047-20BDAC
133-047-20BDAC
133-047-20BDAC | 0 - 0
0 - 0
0 - 0
0 - 0
0 - 0 | 03/21/90 | MD
WC
WC | 34 | 8.6
13.1
1.02
0.97 | 0.14
0.33 | 882
1208
122
140
328 | 145
178
156
95
67 | 374
379
328
460
340 | 478
439
294
230
277 | 2773
3181
2080
1060
1180 | 0 | 396
541
267
350
608 | 323
223
292
400
511 | 0.3 | 15
2.7
1 | 2.66 | 2490
2240 | 948
740 | 0 | 43
49 | 4.6
7.4 | | | | | 133-047-20BDAC
133-047-20BDAC
133-047-20BDAC
133-047-20BDAC
133-047-20BDAC | 0 - 0
0 - 0
0 - 0 | 12/14/88 | MD | | 8.8
7
8.6
49 | | 1295
1385
265
208
448 | 187
193
209
72
95 | 404
374
68.7
345
213 | 380
473
231
384
203 | 3381
4851
0 | | 764
560
684
601
915 | 418
316
314
285
286 | 0 0 0 | 0
9 9
0 | ¥ | | | | | | | | | | 133-047-20BDAC
133-047-20BDAC
133-047-20BDAC
133-047-20BDAC
133-047-20BDAC | | 04/27/89 | MD
MD
MD
MD
WC | 23 | 5.1
3.2
0
1
0.79 | 1.4 | 508
826
632
710
620 | 101
98
120
125
110 | 666
504
394
395
370 | 408
408
322
316
360 | 1670
2413
2550
3357
2780 | 0 | 1094
1031
634
45
17 | 402
393
295
292
350 | 0
0
0
0
0.7 | 0
0
0
0 | 2.8 | 3230 | 2000 | 0 | 25 | 3.6 | 5410 | 25 | | | 133-047-20BDAC
133-047-20BDAC
133-047-20BDAC
133-047-20BDD
133-047-20BDD | | 09/06/89 | MD
MD
WC
WC | 10 | 0
0
94
0.21 | 1.6 | 345
100
1369
130 | 128
245
252
110 | 401
451
390
15 | 355
380
568
6.2 | 2659
4552
461
469 | 0 | 0
0
443
390 | 298
300
294
3.7 | 0.4 | 0 | 0 | 895 | 780 | 400 | 4 | 0.2 | | | | | 133-047-20BDDB
133-047-20DD1
133-047-20DD1
133-047-20DD1
133-047-20DD1 | 248-254
248-254
248-254 | 02/20/86
08/29/69
09/20/73
06/21/74
12/02/75 | HD
WC
WC
WC | 24
24
18
20 | 0.24
0.08
0.58
0.16
0.67 | 0.22
0.13
0.24
0.32
0.23 | 121
97
94
93
92 | 130
33
40
38
39 | 337
79
84
86
85 | 273
9.3
7.2
7.7 | 807
459
467
487
477 | 0
0
0 | 905
167
170
170
170 | 288
18
21
21
21 | 0.9
0.9
0.7 | 0.4
1
3.4
1 | 0.45
1.7
2
0.44 | 2450
656
677
678
677 | 838
379
400
390
390 | 17
0
0 | 47
31
31
32
32 | 5.1
1.8
1.8
1.9 | 1100
1170 | 10.6 | | | 133-047-20DDD1
133-047-20DDD1
133-047-20DDD1
133-047-20DDD1
133-047-20DDD1 | 248-254
248-254 | 07/19/79
02/16/84
04/20/88
06/30/89
04/25/90 | WC
WC
WC | 21
14
5.8
5.2 | 0.79
17.9
1.7
0.1
2.9 | 0.2
0.3
0.24
0.14
0.35 | 80
90.5
84
32
40 | 27
34
39
5.5
7.5 | 65
83
85
3.5 | 7.2
7
8.4
3
3.7 | 392
503
473
112
154 | 0
0
0 | 120
144
150
26
29 | 16
21.4
22
3.3
5.3 | 0.6
0.7
0.2
0.1 | 0.5
1
8.7 | 0.17
0.38
0.04
0.04 | 532
628
639
143
178 | 310
366
370
100
130 | 0
11
5 | 31
33
33
7 | 1.6
1.9
1.9
0.2 | 870
980
289 | 10
8
10 | 7.6 | | 133-047-20DDD2
133-047-20DDD2
133-047-20DDD2
133-047-20DDD2
133-047-20DDD2 | 48-51
48-51
48-51 | 09/17/74
12/02/75
01/22/76
02/16/84
04/09/86 | WC
WC
HD
WC | 20
20
16
26 | 2.9
4.8
3.2
9.6
12 | 0.26
0.4
0.03
0.56
0.48 | 310
360
370
381
340 | 130
150
140
136
140 | 160
180
170
175
170 | 9.4
12
12
12 | 430
415
341
446
394 | 0 0 0 | 1200
1500
1500
1470
1400 | 18
16
41
18
21 | 0.3 | 1
1.5
2.5
0.2 | 0.63
0.8
0.84 | 2060
2450
2420
2410
2320 | 1300
1500
1500
1510
1400 | 940
1200
1200 | 21
21
20
20
20 | 1.9
2
1.9
2
2 | | | | | 133-047-20DDD2
133-047-20DDD2
133-047-20DDD2
133-047-21AAA
133-047-21AAA | 48-51
48-51
0-0 | | WC
WC
MD
MD | 23
25
18 | 7.6
6.8
13
5.6
11.1 | 0.36
0.37
0.3 | 300
300
250
909
1437 | 120
120
150
279
429 | 150
160
160
419
458 | 12
12
12
472
855 | 399
384
282
3666 | 0
0
0 | 1200
1200
1200
240
307 | 23
20
22
330
393 | 0.3
0.2
0.1 | 3.3
1
1
98
0 | 0.43
0.56
0.63 | 2040
2030
1970 | 1200
1200
1200 | 920
930
1000 | 21
22
22 | 1.9 | 2450
2710
2400 | 8
10
9 | | | 133-047-21AAA
133-047-21AAA
133-047-21BAD
133-047-21BCB
133-047-21CBA | 0-0
0-160
189-195 | 02/06/90
03/21/90
08/12/69
08/28/69
09/05/69 | MD
WC
WC | 17
29
30 | 108
60
0.36
0.2
1.7 | 0.06
0.11
0.16 | 4219
4018
41
99
114 | 609
484
18
28
35 | 436
350
132
70
52 | 824
696
11
9.7
6.4 | 9369
8708
367
454
451 | 0
0
0 | 449
494
131
143
150 | 261
213
32
13
6.2 | 0.7 | 0
2.3
0
0.1 | 0.56
0.37
0.15 | 567
617
618 | 176
364
430 | 0
60 | 59
29
21 | 4.2
1.6
1.1 | 1040
990
920 | 11.7
9.4
10 | | | 133-047-21CBB1
133-047-21CBB2
133-047-21CBB2
133-047-21CBB3
133-047-21CBB3 | | 09/24/69 | WC
WC
WC
WC | 28
26
28
30
30 | 0.78
2.1
0.78
0.08
0.98 | 0.2
0.13
0.2
0.16
0.18 | 132
114
132
134
129 | 35
31
35
27
31 | 47
53
47
51
50 | 6.9
6.2
6.9
5.6 | 483
476
483
486
486 | 0 0 0 | 183
133
183
150
158 | 8.1
9.1
8.1
10 | 0.4 | 0.2
2.5
0.2
1 | 0.07
0.07
0.07
0.15
0.15 | 679
611
679
649
656 | 474
412
474
444
448 | 78
22
78
45 | 17
22
17
20 | 0.9
1.1
0.9
1.1 | 1040
990
1040
1020
1050 | 10
9.4
10
8.3 | | | 133-047-21CBB3
133-047-21CBB3
133-047-28ABB
133-047-28DCD1
133-047-28DCD1 | 230-280
178-181
238-243 | 09/26/69
09/27/69
08/29/69
07/23/87
04/20/88 | WC
WC
WC |
30
30
32
29
28 | 1.2
0.76
0.58
0.08
0.47 | 0.14
0.17
0.08
0.06
0.13 | 128
126
79
30
30 | 32
33
23
14
14 | 50
50
95
160
170 | 5.6
5.6
10
9.1 | 488
486
445
448
463 | 0
0
0 | 163
162
121
80
80 | 10
10
18
30
31 | 0.8 | 2.5
0
7.6
0.2 | 0.15
0.19
0.49
1.1
0.69 | 662
660
599
584
592 | 452
452
291
130
130 | 52
53
0
0 | 19
19
40
71
72 | 1
1
2.4
6.1
6.5 | 1050
1050
950
970
930 | 8.3
9.4
12
10 | | | | | | | | (milligrams per liter)———————————————————————————————————— | | | | | | | | | | | | | | > | | | Spec | | | | | |----------|--|-------------------------------|--|----------------------|--|--------------------------------------|--------------------------------------|--------------------------------|------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------|----------------------------------|-------------------------------|---------------------------------|---------------------------|--------------------------------------|----------------------------------|---------------------------------|------------------------------|----------------------------|---------------------------------|---------------------------------|---------------------------|-------------| | Location | | Screened
Interval
(ft) | Date
Sampled | Lab
ID | SiO ₂ | Fe | Mn | Ca | Mg | Na | к | н∞₃ | ∞ ₃ | so ₄ | СІ | F | NO ₃ | В | TDS | Hardnes
CaCO ₃ | s as
NCH | %
Na | SAR | Cond
(µmho) | Temp
(∞C) | рН | | | 133-047-28DCD1
133-047-28DCD1
133-047-28DCD3
133-047-28DCD3
133-047-28DCD3 | 238-243
60-65
60-65 | | MC
MC
MC | 31
27
24
26
25 | 0.02
0.06
0.01
0.24
0.08 | 0.08
0.08
0.08
0.16
0.17 | 28
28
62
67
57 | 14
14
36
37
29 | 170
170
75
77
53 | 8.1
8.5
4.8
4.9
4.9 | 459
473
479
553
397 | 0
0
0
0 | 77
77
20
21
29 | 31
31
15
16
12 | 1.7
1.7
0.2
0.3 | 5.9
0.8
16 | 0.98
1
0.32
0.36
0.27 | 594
591
474
523
423 | 130
130
300
320
260 | 0
0
0
0 | 73
73
35
34
30 | 6.5
6.5
1.9
1.9 | 980
990
920
880
722 | 10
9
13
10
10 | | | | 133-047-28DCD3
133-047-28DDC
133-047-29BAB2
133-047-29BAB2
133-048-01DDD1 | 0-216
65-68 | 04/25/90
09/04/69
09/18/74
04/25/90
09/19/69 | MC
MC
MC | 25
32
20
28
9.9 | 0.72
1.4
0.45
0.32
0.44 | 0.25
0.13
0.06
0.18
0.01 | 65
66
100
130
36 | 34
18
56
69 | 66
102
140
170
211 | 5.5
5.6
7.1
10
12 | 529
461
620
583
456 | 0
0
0
0 | 24
65
250
500
151 | 15
23
26
27
43 | 0.1
1
0.2
0.2
3.4 | 13
0.4
1
3.6 | 0.37
0.37
0.31
0.36 | 510
569
906
1220
707 | 300
238
480
610
136 | 0
0
0
130
0 | 32
48
38
37
75 | 1.7
2.9
2.8
3
7.9 | 860
1020
1780
1210 | 9
9
9 | | | | 133-048-01DDD2
133-048-02ADA
133-048-03ABB1
133-048-03ABB2
133-048-03ABB2 | 98-118
116-119 | 06/03/70
05/26/70
05/28/70
09/18/74
07/19/79 | WC
WC
WC
WC | 29
31
29
19 | 0
1.4
0.8
0.12
0.99 | 0.11
0.23
0.16
0.32 | 104
114
124
120
50 | 36
39
36
44
16 | 68
62
57
52
21 | 6.1
5.5
5.6
6.5
3.9 | 500
469
480
480
181 | 0
0
0
0 | 127
198
191
190
82 | 19
11
11
11
6.1 | 0.3
0.3
0.4
0.2 | 0.9
0.5
0.5
1 | 0.22
0
0.31
0 | 637
694
691
680
283 | 406
445
457
480
190 | 0
60
63
86
42 | 26
23
21
19
19 | 1.5
1.3
1.2
1 | 950
470 | 8.3
8.3
9.5 | 7.69 | | | 133-048-03ABB2
133-048-12BAA
133-048-12BAA
133-048-12BAA
133-048-18AAD | 115-135
115-135
115-135 | 08/23/83
05/26/70
06/19/74
07/19/79
07/23/64 | MC
MC
MC | 17
24
21
30
23 | 0.03
0.72
1.2
0.63
0.94 | 0.58
0.11
0.15
0.2 | 120
120
110
100
75 | 46
40
38
44
24 | 51
76
51
53
710 | 9.4
7.1
6
6.1
17 | 466
387
480
475
278 | 0
0
0
0 | 200
310
150
140
1100 | 12
10
11
8.8
335 | 0.3
0.4
0.6
0.4
5.7 | 4.8
3
1
1
3 | 0.3
0
2.9
0.33
1.8 | 691
782
629
618
2420 | 490
465
430
430
286 | 110
148
36
40
58 | 18
26
20
21
83 | 1
1.5
1.1
1.1
18 | 1050
1050
1090
975 | 10
10
10.5
10 | 7.5
7.45 | | | 133-048-24AAD1
133-048-24AAD2
134-048-04CBD
134-048-09DAB
134-048-17AAA | 48-51
?-378
?-390 | 09/18/74
09/13/74
02/08/71
07/23/64
02/08/71 | MC
MC
MC
MC | 19
20
13
22
28 | 0.06
0.04
0.2
0.19
0.66 | 0.18
0.03
0.03 | 28
130
25
6.4
88 | 15
79
9.6
2.9
35 | 220
160
251
325
136 | 5.2
8.6
9.6
9 | 560
520
319
438
469 | 0
0
0
7.2
0 | 92
540
246
217
131 | 47
27
100
110
102 | 0.6
0.2
4.2
0.4
0.9 | 1
1
3.4
3
0.7 | 1.4
0.63
1.2
1.2
0.8 | 705
1220
820
918
761 | 130
650
102
28
363 | 220
0
0 | 78
35
83
95
44 | 8.4
2.7
11
27
3.1 | | 13.3 | | | 296 | 134-048-20ADD2
134-048-20ADD2
134-048-20ADD2
134-048-20ADD2
134-048-21BBB | 130-135
130-135
130-135 | 11/26/79
07/21/81
07/25/83
09/03/86
06/04/70 | MC
MC
MC | 29
27
30
28
30 | 0.49
0.44
0.34
0.91
8.9 | 0.14
0.11
0.1
0.22
0.23 | 60
55
68
160
91 | 27
27
28
100
24 | 180
190
180
370
117 | 6.5
9.6
10
12
5.7 | 387
402
383
392
426 | 0
0
0
0 | 220
220
260
1000
169 | 95
95
100
220
53 | 1.3
0.8
1.1
1.2
0.5 | 1
1
1
10
0 | 0.45
0.64
0.48
0.78
0.41 | 812
825
868
2100
710 | 260
250
280
810
327 | 0
0
0
490
0 | 59
61
57
49
43 | 4.9
5.2
4.7
5.7
2.8 | 1200
1325
3000
1000 | 9
9
9
8.9 | 7.8
7.2 | | | 134-048-25CCB
134-048-26CDA
134-048-31
134-048-32DAA
134-048-32DAA | 7-352
7-7
58-78 | 09/19/69
09/19/69
00/00/68
06/03/70
06/19/74 | WC
WC
WC | 14
17
28
20 | 5.7
0.24
2.3 | 0.04
0.01
0.03
0.1 | 35
29
94
94 | 12
11
28
38 | 267
277
95
82 | 13
9.7
6.9
6.8 | 352
397
250
455
470 | 0
0
0
0 | 230
212
1250
171
160 | 144
131
298
22
24 | 3
3
0.4
0.5 | 0.2
2.5
0
0.5 | 0.82
0.9
0.41
2 | 898
889
670
661 | 135
118
302
349
390 | 0
0
0
5 | 79
82
37
31 | 10
11
2.2
1.8 | 1510
1460
930
1210 | 8.9
8.9
9 | |