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LOCATION-NUMBERING SYSTEM FOR TEST HOLES AND WELLS 
 
The location-numbering system is based on the public land survey system (PLSS) of the U.S. 
Government.  The PLSS typically divides the land into 6-mile by 6-mile townships that are 
subdivided into 36 one-mile by one-mile sections, each containing 640 acres.  The location of 
each township is identified by a township and range designation.  The township designation 
indicates its location north or south of an east-west trending base line.  The range designation 
indicates its location east or west of a north-south line called a Principal Meridian.  For example, 
T143N R70W refers to the township that is in the 143rd row of townships north of a base line and 
the 70th column of townships west of a Principal Meridian.  
 
The test hole and well location-numbering system is illustrated below.  The first six numbers 
identify the township in terms of its township and range designation.  The seventh and eighth 
numbers denote the section in the township, and the first letter A, B, C, or D indicates the 
northeast, northwest, southwest, or southeast quarter of the section, respectively.  The second 
letter denotes the quarter of the quarter, and the third letter identifies the 10-acre tract within the 
quarter-quarter.  Consecutive numbers follow the letters if more than one test hole or well is 
located within a 10-acre tract (e.g. 14307004ADD1 and 14307004ADD2). 
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Hydrogeology and Groundwater Management 
in Northern Kidder and Northwestern Stutsman 
Counties 
 
 
 
 

INTRODUCTION 
 
The overarching purpose of this study was to synthesize and interpret available information 
pertaining to the Central Dakota Aquifer System in northern Kidder and northwestern Stutsman 
Counties.   Excellent descriptions of the geology and groundwater resources of Kidder and 
Stutsman Counties were published in the early 1960s (Rau et al., 1962; Winters, 1963).  
However, nearly 50 years of fieldwork have followed these county studies.  Several hundred 
borings have been advanced, hundreds of water samples have been collected and analyzed, 
and thousands of water level measurements have been taken, so an update is warranted.  
Unlike the aforementioned county studies, the current investigation does not encompass the 
entire area of each county, because the Central Dakota Aquifer System only extends into the 
northwestern portion of Stutsman County, and it is managed separately in the southern half of 
Kidder County.  Furthermore, the scope and purpose of the current investigation differ from the 
county studies.  Specific objectives of this project were to advance our understanding of the 
local geology, and to develop a conceptual hydrogeologic model that could guide future 
resource investigations, support management decisions, and inform numerical hydrogeologic 
models.  For a brief discussion of the local climate, soils, and vegetation see Rau et al. (1962) 
and Winters (1963).  
 
Glacial Geology.  Northern Kidder and northwestern Stutsman Counties lie within the Missouri 
Coteau physiographic province – an upland area of hummocky, glaciated plains with isolated 
drainages (Figure 1).  The thick glacial deposits of the Coteau resulted from the large-scale 
stagnation and gradual wasting away of glacial ice, accompanied by the collapse of the glacial 
sediment that was carried by the ice.  Areas in North Dakota that are characterized by collapsed 
glacial topography include the Missouri Coteau, the Turtle Mountains, and the Prairie Coteau.  
Hummocky collapsed topography formed in these three areas, because the glaciers were forced 
to advance up steep escarpments before they flowed onto the uplands.   
 
When the glaciers advanced over these escarpments, the resulting internal stress in the ice 
caused shearing (Figure 2).  Large amounts of sediment originally beneath the ice were forced 
upward into the glacier and onto its surface along shear planes.  As the climate warmed, the 
glaciers stopped advancing and large masses of ice stagnated over the uplands.  The ice 
became isolated and detached from the main body of the retreating glacier, because it was 
relatively thin and often covered by a thick blanket of rock debris.  East of the escarpments the 
ice was more thick and less debris-rich, so the glaciers did not stagnate.   
 
As the stagnant ice slowly wasted away, the ice surface topography became progressively more 
irregular.  Ice covered with a lot of debris was well insulated and melted very slowly; ice with 
little debris melted more rapidly.  The debris on top of the ice was unstable and prone to 
slumping and flowing into low areas. 
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Rivers were common features on the irregular surface of the wasting ice.  Consequently, test 
borings in ice-wasting depositional environments often encounter multiple layers of till, 
separated by layers of fluvial sand and gravel.  This stratigraphic sequence is often 
misinterpreted to be the product of multiple glaciations, when in many cases it is the 
manifestation of a single episode of ice advance and retreat (Figure 3). 
 
Rivers also extended beyond the margins of the melting ice.   Most of the southern halves of 
northern Kidder and northwestern Stutsman Counties are covered by stratified sand and gravel  
that was “washed out” of the ice by meltwater streams (Figure 4).  If the outwash was deposited 
on buried ice, melt out of the underlying ice caused the outwash to have a hummocky 
topography like the collapsed glacial till.  Collapsed outwash has the same composition as 
uncollapsed river sediment, but its bedding is usually faulted and folded. 
 
There is evidence of two Late Wisconsinan cycles of ice advance, stagnation, and wasting in 
the project area.  Most of the land in the north half of Figure 4 is covered by hummocky 
stagnation moraine and tall, arc-shaped end moraines from the younger Streeter advance.  The 
stagnation moraine, end moraines, and outwash associated with the Streeter advance partially 
bury the ground moraine and end moraines from the older Long Lake advance.   
 
In the southern half of the study area, the most abundant surficial deposit is the outwash from 
the Streeter advance.  The meltwater streams that formed this outwash plain generally flowed 
from the north, so the plain slopes to the south, and grain size decreases to the south.  The 
outwash contains several closed depressions that were produced by the melting of isolated 
blocks of stagnant ice.   
 
There is a long, narrow, northeast-southwest trending band of gravelly outwash at the eastern 
end of the project area (Qso in Figure 4).  This glaciofluvial material was deposited in a valley 
between till-covered, ice-cored ridges.  Over time, the ice beneath the ridges melted away, 
leaving the gravel train at a higher elevation than the surrounding till. 
 
Bedrock Topography.  The bedrock surface consists of a central, eastward-dipping plateau 
bounded by highlands to the north and west and bedrock valleys to the northeast and southeast 
(Figure 5).  Maximum relief exceeds 1000 feet.  The complex topography suggests a badlands-
type preglacial landscape. 
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The inset at the top of Figure 5 shows Bluemle’s interpretation of the courses of major preglacial 
streams and glacial diversion channels (Bluemle, 2000).  Apparently, the Ancestral Wing River 
flowed to the east across northern Kidder County and emptied into the northerly flowing 
ancestral Cannonball River near the border between Kidder and Stutsman Counties.  An 
unnamed tributary of the Cannonball entered from the southeast.  Further north, a glacial 
diversion channel crosscut the Cannonball.   
 
The unnamed tributary to the ancestral Cannonball is evident in the southeastern corner of the 
study area.  However, only short segments of the northern diversion channel and the major 
preglacial river valleys are visible in Figure 5.  A segment of the northern diversion channel lies 
immediately east of the highland in the north central portion of Figure 5.  The valley of the 
ancestral Wing River can be seen where it enters the study area from Burleigh County, but its 
location is lost in the central portion of the map.  Similarly, the valley of the ancestral Cannonball 
can be located at the southern edge of the study area, but it cannot be traced further north. 
 
Perhaps we cannot trace these ancestral river valleys because their channels are narrow and 
were missed by the existing test hole and observation well network.  Or perhaps, the locations 
of these valleys have been obscured by the occurrence of ice-shove blocks of bedrock that lie 
above the actual bedrock surface.   
 
Large, intact blocks of bedrock can be incorporated into a moving glacier if the glacier has a 
mixed basal thermal regime, and the bedrock contains planes of weakness and layers of 
confined, permeable materials (Bennett and Glasser, 1996; Blumle, 2000).  A glacier with a 
mixed basal thermal regime has regions of warm ice where the basal ice is constantly melting,  
and it has regions of cold ice where there is no basal meltwater and the ice is frozen to its bed.  
The great pressure of the overlying ice creates elevated pore pressures in the confined layers of 
bedrock.  This forces groundwater in the confined units to move toward the margin of the glacier 
where the pressure is lower.  If the migrating groundwater encounters an area where the 
overlying rock is weaker, it can force the overlying rock up and into the path of the moving 
glacier (Figure 6).   
 
If the ice above the detached bedrock is warm, the rock will be subject to erosion by meltwater 
at the base of the glacier.  However, if the ice above the detached bedrock is cold, and 
particularly if the ice had previously been warm and later turned cold, large rafts of previously 
saturated bedrock can become frozen to the bed of the glacier and entrained in the ice.  The 
basal temperature can change from warm to cold near the edge of a glacier if the ice along the 
margin thins or the winter air temperatures are low enough to cool the peripheral ice. 
 
Sibley Buttes in west central Kidder County consists of ice-shove blocks of Cretaceous Fox Hills 
Formation (Figure 4).  Similarly, the “Bedrock High” that straddles the border between T143N 
R73W and T143N R74W on Figure 4 is comprised of ice-shove blocks of Fort Union group 
sediments.  Evidence that these highlands are not bedrock-cored includes the boring log for 
14307308CBBA and the chaotic strikes and dips in outcrops (Rau et al., 1962).   
 
Bedrock Geology.  The oldest bedrock in the study area that is either exposed at the land 
surface or is in direct contact with the base of the glacial overburden is the Cretaceous Pierre 
Formation.  In the subsurface, the Pierre Formation is a soft to hard, friable, dark gray to olive 
black, non-calcareous siltstone, claystone, mudstone, or shale that drills tight and often contains 
off-white bentonite laminae.  The Pierre Formation is effectively impermeable, except where its 
upper surface is fractured, and it is more than 900 feet thick in west-central Stutsman County 
(Winters, 1963).    
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The Cretaceous Fox Hills Formation overlies the Pierre in southwestern Stutsman County and 
most of southern and western Kidder County.  The Fox Hills Formation consists of greenish-
gray to grayish-yellow, fine- to medium-grained, generally friable sandstones interbedded with 
dark greenish-gray, brownish-gray, and gray siltstones and shales with occasional thin beds of 
carbonaceous material or bentonite.  The Fox Hills is up to 300 feet thick in Stutsman County 
(Winters, 1963).  In Kidder County, several domestic wells and stock wells are screened in the 
sandstones and sandy siltstones of the Fox Hills Formation, and many of these wells are 
artesian.   
 
The Fox Hills Formation is the youngest bedrock in Stutsman County (Winters 1963).  In Kidder 
County, the middle unit of the Tertiary (Paleocene) Fort Union Group, the Cannonball 
Formation, lies directly above the Fox Hills (Rau et al., 1962).  The Cannonball Formation 
consists of olive, greenish-black, and brownish-gray sandstones, siltstones and shales, and 
lenticular limestones.  The sandstones are friable and non-calcareous, unless cemented, and 
have a “salt and pepper” appearance.  The siltstones and shales are non-calcareous, 
fossiliferous, carbonaceous, and frequently sandy.   
 
The upper unit of the Fort Union Group, Tongue River Formation, is the youngest bedrock in 
Kidder County. It is a terrestrial formation that consists of a yellowish- to olive-gray basal 
sandstone with a basal pebble lag and an erosion-resistant limy cap that is overlain by 
yellowish-brown, olive gray, and brownish-black claystones, shales, and siltstones that are soft,  
calcareous, and interbedded with lignite (Kume and Hansen, 1965).  Known occurrences of Fort 
Union Group sediments are restricted to highland areas in northwestern Kidder County.  
 
Figure 7 shows the lithology of the bedrock surface at several hundred locations in northern 
Kidder and northwestern Stutsman Counties.  Bedrock lithology is uncertain at many of these 
locations, because boring log descriptions of bedrock are terse.  In numerous logs, the bedrock 
is simply described as gray shale or siltstone when both the Fox Hills and Pierre Formations 
contain gray shales and siltstones.  In order to differentiate between these two units, more 
detailed observations of a dark green or olive black color, sandy texture, greasy luster, or 
calcareous character are needed.  Similar problems are encountered when trying to distinguish 
between the Fox Hills and Fort Union Group sediments, since both units include brownish clays 
and greenish sands.  Defining characteristics for the Fort Union Group include limestone layers 
and thick sequences of lignite, blackish shale, siltstone, or sandstone, or brown clay.   
 
Since the bedding in most of the Fox Hills outcrops is very nearly horizontal (Rau et al., 1962), 
elevation data was used in conjunction with boring log data to distinguish between bedrock 
units.  At elevations below 1535 feet, the bedrock was assumed to be Pierre Formation, 
because the contact between the Fox Hills and Pierre Formations was observed in three widely 
spaced borings (14207235CCDA1, 14307127AAA, and 14507133CBB) at elevations ranging 
from 1534-1551 feet.  Between 1635 feet and 1770 feet, the bedrock was assumed to be Fox 
Hills, because the highest observed elevation for the Pierre was 1636 feet in 14007124BBB, 
and the lowest elevation for the Fort Union Group was 1770 feet in 14007416CCC.  Above 1830 
feet, the bedrock was assumed to be Fort Union, because the highest observed elevation for 
the Fox Hills in a State Water Commission (SWC) boring was 1827 feet in 14107433DDD.  The 
outcrop of Fox Hills at 14407123ADA is probably part of an ice-shove block. 
 
Several factors can explain the occasional occurrence of the Pierre Formation at elevations 
above its observed contact with the Fox Hills.  First of all, the regional dip of the bedrock is 
approximately 2 to 3 degrees to the northwest (Rau et al., 1962), so the Pierre Formation would 
be expected at higher elevations in the easternmost portions of the study area (e.g., at  
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14206833AAA).  Second, the contact between the two formations is gradational and can be 
difficult to recognize (Kume and Hansen, 1965).  And finally, the Pierre Formation can occur as 
ice-shove blocks suspended in the glacial overburden. 
 
The author recently encountered several ice-shove blocks of Pierre Shale in borings advanced 
near Chase Lake (Figure 8).  The blocks ranged from 7 to 74 feet thick, and 4 of the blocks 
concealed sand and gravel deposits ranging from 17 to 110 feet thick.  The occurrence of thick 
sequences of outwash beneath the blocks suggests that personnel working in this area should 
not automatically terminate drilling as soon as bedrock is encountered in a borehole.  Instead, 
the hydrologist should carefully consider the objective of the drilling program, the elevation of 
the bedrock in the boring, and the elevations of the aquifers in the surrounding area in his or her 
decision to cease drilling.   
 
Given the presence of ice-shove blocks near Chase Lake, it is likely that the valley of the 
ancestral Cannonball River in northeastern Kidder County is hidden beneath a combination of 
shove blocks and surface water bodies, and possibly exits the county beneath Round Lake 
(Figure 8).  Its course through northwestern Stutsman County is ill defined, but probably follows 
the northeasterly trending chain of lakes and sloughs in T143N R68W and T143N R69W.  The 
valley reappears in T145N R69W where it follows a northerly route through Wells County 
(Bluemle et al., 1967).  
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CONCEPTUAL HYDROGEOLOGIC MODEL 
 

Glacial Hydrostratigraphy.  Detailed subsurface characterization was limited to 14 townships 
in northeast Kidder and northwest Stutsman Counties where SWC boring log data are plentiful.  
Initially, more than 100 lithofacies maps were constructed to visualize the lateral distribution of 
geologic materials at 5 to 10 foot elevation increments.  The maps were based on boring log 
descriptions of lithologic units for 400 SWC test holes.  The maps included a few borings in 
southern Kidder and Stutsman Counties to provide a clearer picture of the hydrostratigraphy 
along the southern boundary of the study area. 
 
Later, 50 cross sections were created from a larger set of 834 boring logs in order to interpret 
the lateral and vertical connectedness of lithologic units and delineate hydrostratigraphic units 
(Figure 9 and Appendix A).  The cross sections were based primarily on SWC boring logs and 
irrigation well logs.  Domestic well and stock well logs were consulted in areas lacking sufficient 
SWC and irrigation well data.  Private contractor test hole logs were seldom considered, 
because it is rarely possible to verify the locations of the borings.   
 
In general, the lithofacies maps and cross sections reveal: 1) a large, collapsed, surficial 
outwash plain derived from the Streeter drift that occurs at elevations between 1700 feet and 
1900 feet; 2) an underlying clay-rich aquitard typically found between 1650 feet and 1700 feet; 
3) a narrower, north-south trending body of collapsed outwash that lies at 1580-1650 feet 
(Figure 10); and 4) several deeper, isolated, sand and gravel bodies that lie in ancestral river 
channels (Figure 11).  The surficial outwash and north-south trending buried outwash constitute 
the upper and lower members of the Central Dakota Aquifer System, respectively.  The deeper, 
isolated sand and gravel deposits are not considered a part of the aquifer system – their small 
size, presumably poor water quality, and great depth below the land surface render them poor 
appropriation targets.   
 
Rau et al. (1962) described the surficial outwash plain as “variable in texture, depending on the 
proximity of its source area, and becoming especially coarse close to the border of the ! drift 
from which it was derived”.  Accordingly, the upper aquifer consists of coarse sands and 
bouldery gravels near the till highlands north of Highway 36 and southwest of Woodworth.  
Grain size and aquifer thickness generally decrease to the south with increasing distance from 
the highland source area, and the outwash tends to be dominated by fine to medium sand and 
silt near the southern end of the study area. 
 
Cross sections show that the lower aquifer is strongly heterogeneous (e.g., Figures A15 and 
A16).  Lithologic units range from fine sands, muddy sands, and interbedded clays and sands to 
coarse sands and gravels, and all of these units may occur in a single stratigraphic section.  The 
heterogeneous lithology and collapsed nature of the buried outwash produce a spatially variable 
transmissivity.  The direction of maximum continuity for aquifer thickness coincides with the 
longitudinal (north-south trending) axis of the lower aquifer.   
 
Figure 12 is a block diagram that summarizes the information contained in the cross sections 
and lithofacies maps.  Obviously, deviations from this idealized representation occur throughout 
the study area.  A few of these deviations are discussed below.   
 
The hydrostratigraphy in Marstonmoor Township (T142N R69W) resembles Figure 12 with the 
exception of the lower aquifer, which is absent (Figure 13).  Saturated thickness in the upper 
aquifer can exceed 100 feet (Figures 14 and 15), and the aquifer is often buried beneath the till 
in the local highlands.  To the south, in Chase Lake and Iosco Counties, there appear to be  
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three aquifers east of Chase Lake:  an unconfined aquifer, an upper confined aquifer, and a 
lower confined aquifer (far right on cross sections ED’, FE’, and GE’ in Figures A4 and A5).   
The associations of these three aquifers with the upper and lower members of the Central 
Dakota Aquifer System north and west of Chase Lake will be discussed in more detail in the 
section on groundwater flow.   
 
The permeable hydrostratigraphic units in the Horsehead Lake area include the upper aquifer 
and two, buried, meandering, sand and gravel bodies (Figures 16, A4, and A5).  The shallow 
buried channel system lies at an elevation of approximately 1650-1710 feet.  One branch of this 
system trends west to east and may follow the course of the ancestral Wing River; the other two 
branches trend north to south.  The three branches coalesce beneath Horsehead Lake (Figure 
16).  South of the lake, the channel system merges with the upper aquifer (cross section FFFF’ 
in Figure A12).   
 
The deeper channel system lies at an elevation of 1560-1650 feet.  This deeper system may 
also follow the course of the ancestral Wing River west of Horsehead Lake (Figure 16).  At the 
lake, the system trends to the south and merges with the main body of the lower aquifer near 
the southeast terminus of the lake (Figure 13).    
 
South of the study area the Central Dakota Aquifer System consists of a surficial aquifer, a 
shallow semi-confined aquifer, and a deeper confined aquifer.  The surficial aquifer lies in the 
distal, and therefore relatively thin and fine-textured portion of the Streeter outwash plain.  The 
shallow semi-confined aquifer is the southern extension of the shallow buried channel system, 
and the deeper confined aquifer is the southern continuation of the lower aquifer.   
 
Groundwater Flow.  Potentiometric contour maps were generated from water level 
measurements taken by SWC staff in April 2010.  The upper aquifer dataset was supplemented 
by information from two other sources:  boring log observations of redox boundaries in test 
holes along the flanks of till highlands, and lake elevations posted on USGS 7.5 minute 
topographic quadrangle maps.  Redox boundaries (i.e., boundaries between reduced and 
oxidized sediments) were used to estimate the position of the water table along the flanks of till 
highlands where water level measurements were lacking.  Posted lake elevations were used in 
areas where outwash was exposed at the land surface and the lakes were not gauged.  These 
lake level measurements constrained the height of the water table in depressional areas where 
contours based on SWC data alone would have placed the water table far above the lakes and 
surrounding land surface.  In most cases, five feet were added to the non-gauged lake 
elevations posted on the USGS maps, because water levels at the gauged lakes were 
approximately five feet higher in April 2010 than they were on the USGS maps.   
 
According to the potentiometric contour maps, groundwater in the upper aquifer moves from the 
highlands in the northern, eastern, and south-central portions of the study area to four terminal 
lakes:  Sink Lake, Horsehead Lake, Kunkel Lake, and Chase Lake (Figure 17).  Groundwater 
flow is fastest where the land surface elevation changes rapidly.  In all probability, the pitted 
outwash contains smaller-scale groundwater flow systems (Toth, 1963; Freeze and 
Witherspoon, 1967) that are not visible on the map. 
 
In the lower aquifer, groundwater generally flows from north to south (Figure 18).  Flow appears 
to be westerly in Stutsman County; however, additional test drilling is needed to improve our 
understanding of the geometry of the lower aquifer and the direction of groundwater flow in this 
part of the study area.  Based on available information, it appears that the lower aquifer in 
Stutsman County is not connected to the lower aquifer in Kidder County (see Figure 13).   
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Instead, the lower aquifer in Stutsman County merges with the upper aquifer just north of Chase 
Lake and ultimately discharges to the lake.  This interpretation is based on water level 
responses in several upper aquifer wells to the capping and uncapping of the artesian, lower 
aquifer well at 14106903CABA.  
 
East of Chase Lake, there are three aquifers:  an unconfined aquifer and two confined aquifers 
(far right on cross sections ED’, FE’, and GE’ in Figures A4 and A5).  The lower confined aquifer 
occurs at roughly the same elevation as the lower aquifer in Kidder County and was discussed 
in the previous paragraph.  The upper confined aquifer occurs at the same elevation as the 
upper aquifer north and west of Chase Lake.  Figure A3 reveals a possible connection between 
the upper confined aquifer and the upper aquifer at Chase Lake; however, the connection is 
south of Pearl Lake, and there is a hydrologic divide south of Pearl Lake that causes the upper 
confined groundwater east of the divide to flow toward Pearl Lake rather than Chase Lake 
(Figure 19).   
 
Near Pearl Lake, the upper confined groundwater may merge with the unconfined groundwater 
and discharge to the lake (far right on cross section GE’ in Figure A5).  Alternatively, the upper 
confined groundwater may flow beneath Pearl Lake and pass to the north of 14106914DDD en 
route to Chase Lake (Figure 19).  Available evidence favors the former scenario; the latter 
scenario requires not only that the upper confined and unconfined aquifers are disconnected, 
but also that the upper confined aquifer extends north and west of 14106914DDD and connects 
with the upper aquifer north of Chase Lake.   
 
The flow situation in the unconfined aquifer east of Chase Lake is similar to the upper confined 
aquifer.  The surficial sands and gravels east of Chase Lake are physically connected to the 
upper aquifer sediments north and west of the lake (Figures 4 and A5).  However, the Apple 
Creek watershed divide just east of Chase Lake appears to be a hydrologic divide for the 
unconfined groundwater, such that the unconfined groundwater east of the divide discharges to 
Pearl Lake rather than Chase Lake (Figure 20).  A less likely situation is that after converging at 
Pearl Lake, the unconfined groundwater flows to the west, crosses the surface water divide 
south of 14106902DDD, and discharges to Chase Lake (Figure 20).  Water level data are 
inconclusive, because there are no observation wells in the unconfined aquifer north of 
14106914DDD2 (where the water level is much higher than Pearl Lake) or south of 
14106902DDD2 (where the water level is slightly higher than Pearl Lake).  Water chemistry data 
are also inconclusive, because Pearl Lake has roughly the same salinity as both Horsehead 
Lake (a terminal lake) and Des Moines Lake (a flow through lake).  In 2001, the concentrations 
of dissolved solids in Pearl, Horsehead, and Des Moines Lakes were 1920, 2020, and 2460 
milligrams per liter, respectively.  In three other terminal lakes (Kunkel Lake, Sink Lake, and 
Chase Lake) the water was much more saline, with concentrations of dissolved solids ranging 
from 5300-13,700 milligrams per liter.   
 
Aquifer Recharge.  The upper aquifer is recharged primarily by precipitation that falls in late 
autumn through early spring (Figure 21; Sloan, 1972; Winter and Rosenberry, 1995).  Although 
recharge is areally distributed on the pitted outwash plain, it may be more significant in 
depressional areas within the plain (Lissey, 1971; Freeze and Cherry, 1979; Labaugh et al., 
1987).  In the till highlands, recharge appears to occur at discrete locations where the upper 
aquifer extends to the land surface; for example, at 14307015BCBC, 14307029BBB, 
14307124BBC, 14407133BCBA, and several locations in eastern Marstonmoor Township.   
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Recharge to the lower aquifer most likely occurs by several mechanisms, including direct 
connections between the upper and lower aquifers.   Lithologic information suggests that direct 
connections exist near 14106820BBB, 14106830ABB, 14106914BBB, 14106926AAA, 
14106912ACBA, 14107115BAA, 14107134BBB, 14207004CCC, 14307118DA, and 14307132D 
(Figures A2, A3, A5, A8, A14, A15, and A21).  Extremely low concentrations of sodium, sulfate, 
and dissolved solids in the deep groundwater at 14107122AAA suggest there is a direct 
connection nearby.  Water level responses to the capping and uncapping of flowing well 
14106903CABA indicate a direct connection north of Chase Lake near 14106914BBB.  Indeed, 
direct connections may be commonplace given the rapid, post-irrigation recovery of water levels 
in lower aquifer wells.  Hydrographs show that by May of any given year, lower aquifer water 
levels throughout the study area have recovered to within one foot of the previous May levels, 
even though the head may have dropped more than 60 feet during the intervening growing 
season (Figure 22).  If the fall and winter following irrigation were relatively dry, the subsequent 
May water levels were approximately one foot lower; if the fall and winter were relatively wet, 
the May water levels were about one foot higher. 
 
Water Quality.  Rain and melted snow are extremely dilute and saturated with atmospheric 
oxygen and carbon dioxide.  Since carbon dioxide and water combine to form carbonic acid, 
rain and melted snow are not only dilute and oxidizing, they are also acidic, and they react with 
the minerals and organic matter they encounter as they infiltrate and flow through the 
subsurface.  As the groundwater moves from recharge to discharge areas, its major ion 
chemistry is largely controlled by mineral availability and solubility.  Consequently, shallow 
groundwater in recharge areas tends to have low concentrations of dissolved solids, and the 
dominant cations and anions are often calcium and bicarbonate, respectively, from the 
dissolution of relatively abundant and moderately soluble carbonate minerals.   As travel time 
and distance increase, the concentrations of dissolved solids increase, and the dominant anion 
may change from bicarbonate to sulfate and then perhaps to chloride as the groundwater has 
more opportunity to encounter less abundant but more soluble minerals such as gypsum and 
halite.  Deviations from this evolutionary sequence may occur due to oxidation-reduction 
reactions, cation exchange reactions, and variations in mineral availability. 
 
Figure 23 is a Piper diagram depicting the relative abundances of major ions in water samples 
collected from the upper aquifer within the past five years.  Calcium was the dominant cation 
and bicarbonate the dominant anion at the majority of sampling locations.  Concentrations of 
dissolved solids were less than 500 milligrams per liter in 62 percent of the samples, and with 
very few exceptions, the relative abundances of potassium and chloride were extremely low.  
The calcium-bicarbonate dominated chemistry, low to moderate abundance of sulfate, and low 
concentrations of dissolved solids indicate that the shallow groundwater is generally young and 
has not traveled far from its point of infiltration.  The few samples with high concentrations of 
dissolved solids tended to be sodium-rich and were often found beneath or adjacent to till 
highlands where travel distances tended to be greater and opportunities for dilution by infiltrating 
precipitation were few and far between. 
 
The major ion chemistry in the lower aquifer was similar to the upper aquifer (Figure 24).  
Bicarbonate was the dominant anion in all but three of the samples, and calcium was often the 
dominant cation.  However, concentrations of dissolved solids were higher (only 7 percent of the 
samples had less than 500 mg/l), a larger proportion of samples had sodium as the dominant 
cation, and the relative abundance of chloride tended to be higher.  These findings suggest that 
water in the lower aquifer is older and has traveled longer distances than water in the upper 
aquifer. 
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The USDA classifies the suitability of water for irrigation in terms of its electrical conductivity and 
sodium adsorption ratio.  The upper aquifer samples had conductivities ranging from 340 to 
3740 micromhos per centimeter, and sodium adsorption ratios were 0.1 to 7.5.  According to the 
USDA classification scheme, the shallow groundwater typically has a low sodium hazard and a 
medium to high salinity hazard (Figure 25).  The deep groundwater also tends to have a low 
sodium hazard; however, it generally has a high salinity hazard, and several lower aquifer 
samples had very high salinity or sodium hazards (Figure 25).  Waters with a low to medium 
sodium hazard and a medium to high salinity hazard are suitable for irrigation in settings with 
adequate drainage (U.S. Salinity Laboratory Staff, 1954).  Waters with very high sodium or 
salinity are generally inappropriate for irrigation.  
 
Hydraulic Properties.  The SWC conducted a pumping test in the lower aquifer, approximately 
0.5 miles west of Kunkel Lake (Krogstad, 2004).  Aquifer transmissivity and storativity were 
estimated at four locations within a 0.5-mile radius of the production well.  Transmissivities 
ranged from 5650-7440 ft2/d and storativities varied between 0.00018 and 0.00083.  Hydraulic 
conductivities calculated from aquifer transmissivity and thickness were 75 ft/d to 270 ft/d; these 
values fall within the expected range for sandy aquifers (Freeze and Cherry, 1979).   
 
Two years later, a second pumping test was conducted in the lower aquifer approximately 14 
miles south of Kunkel Lake (Parkin, 2006).  Once again, aquifer parameters were estimated at 
four locations, but this time the locations fell within a 0.3-mile radius of the production well.  
Transmissivities ranged from 14,000-16,200 ft2/d, and storativities ranged from 0.00037 to 
0.00064.  Hydraulic conductivities calculated from aquifer transmissivity and thickness estimates 
varied between 210 ft/d and 380 ft/d.   
 
In the Kunkel Lake test area, aquifer thickness and lithology vary greatly over short distances.  
At the four parameter-estimation locations, aquifer thickness varies between 23 ft and 75 ft and 
lithologies range from clean sand and gravel to complex assemblages of clay, sand, and gravel 
units.  At one location (14107115BCB), two borings were advanced through the lower aquifer.  
In one boring, the lower aquifer was 23 ft thick and consisted of 14 ft of silty sand, 6 ft of clean 
sand, and 3 ft of gravel; in the other, it was 59 ft thick and contained 53 ft of sand and 6 ft of 
gravel.  The two borings were only 20 ft apart from one another. 
 
Compared to the Kunkel Lake area, the lower aquifer in the southern test area is more thick, 
coarse-textured, and homogeneous.  Aquifer thickness ranges from 41-66 ft and lithologies are 
invariably clean sand and gravel with 0-2 ft of clay.  The relatively uniform aquifer thickness and 
texture is reflected in relatively uniform estimates of aquifer hydraulic properties. 
 
Lower aquifer hydraulic properties were also estimated for the eight pumping test observation 
locations using boring log descriptions of lithologic units and published hydraulic property values 
(Table 1).  The mean hydraulic conductivity and specific storage calculated from the tabulated 
data are 220 ft/d and 1.4 x 10-5 ft-1, respectively, while the means for these locations determined 
by the pumping tests are 220 ft/d and 8.0 x 10-6 ft-1, respectively.  Since there is good 
agreement between the two methods, aquifer hydraulic properties were calculated for every 
boring location in the study area using the data in Table 1.  Transmissivity maps for the upper 
and lower aquifers are presented in Figures 26 and 27.  Figure 28 is a composite image of total 
transmissivity for the Central Dakota aquifer system.  
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Table 1.  Hydraulic properties for various sediments and rocks (Sources: Freeze and Cherry, 
1979; Shaver, 1994; Spitz and Moreno, 1996; Domenico and Schwartz, 1998; Shaver, 
1998; Wiedemeier et al., 1998) 

 
Lithology 
 

Hydraulic 
Conductivity 

(ft/d) 

Anisotropy 
Ratio  

(Kv/Kh) 

Specific 
Yield 

(  ) 

Specific 
Storage  

(ft-1) 
Clay 0.014 0.1 0.05 1.70E-04 
Clay, silty 0.014 0.1 0.05 1.70E-04 
Clay, sandy 0.014 0.1 0.05 1.70E-04 
Silt 0.028 0.1 0.08 1.70E-04 
Silt, clayey 0.014 0.1 0.05 1.70E-04 
Silt, sandy 0.014 0.1 0.05 1.70E-04 
Sand 100 0.1 0.25 1.00E-05 
Sand, clayey 1 0.1 0.15 1.00E-05 
Sand, silty 1 0.1 0.15 1.00E-05 
Sand, gravelly 300 0.1 0.25 1.00E-05 
Gravel 1000 0.1 0.25 1.00E-05 
Gravel, clayey 100 0.1 0.15 1.00E-05 
Gravel, silty 100 0.1 0.15 1.00E-05 
Gravel, sandy 600 0.1 0.25 1.00E-05 
Cobbles+ 10000 0.1 0.25 1.00E-05 
Clay-silt interbedded 0.021 0.1 0.07 1.70E-04 
Clay/interbedded sand (till) 0.34 0.1 0.08 1.17E-04 
Clay/interbedded sand (fluvial) 33 0.1 0.12 1.17E-04 
Silt/interbedded sand 0.35 0.1 0.10 1.17E-04 
Sand/interbedded silt/clay 67 0.1 0.19 6.28E-05 
Claystone 8.5E-06 0.1 0.05 1.50E-05 
Siltstone (Pierre) 8.5E-05 0.1 0.05 1.50E-05 
Siltstone (Fox Hills) 0.010 0.1 0.05 1.50E-05 
Mudstone 8.5E-05 0.1 0.05 1.50E-05 
Sandstone 0.010 0.5 0.05 1.50E-05 
Gravel/interbedded silt/clay 670 0.1 0.19 6.28E-05 
Clay/interbedded gravel (till) 33 0.1 0.08 1.17E-04 
Clay/interbedded gravel (fluvial) 330 0.1 0.12 1.17E-04 
Silt/interbedded gravel 33 0.1 0.10 1.17E-04 
Silt, gravelly 0.014 0.1 0.05 1.70E-04 
Clay, gravelly 0.014 0.1 0.05 1.70E-04 
Sand, very fine 10 0.1 0.20 1.00E-05 
Sand, fine 50 0.1 0.25 1.00E-05 
Sand, medium 100 0.1 0.25 1.00E-05 
Sand, coarse 500 0.1 0.25 1.00E-05 
Sand, very coarse 1000 0.1 0.25 1.00E-05 
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GROUNDWATER MANAGEMENT 
 

Appropriation.  Approved and pending appropriation are shown on Figure 29.  The potential for 
additional development is poor throughout most of the study area, because the aquifer system 
is either fully appropriated or its members are too thin or fine textured.  Areas that have the best 
potential for development are shaded green or brown on Figure 30.   
 
Western Area:  The brown-shaded region west of Horsehead Lake is largely unexplored.  The 
soils in this area are deep, coarse textured, and excessively drained, but the thickness and 
lateral extent of the aquifer system beneath these soils are not well known.  Most of the 
domestic wells and stock wells in this area are artesian wells completed in the Fox Hills 
Formation.  Drilling logs often list a thick sequence of surficial sand and/or gravel, but there is 
usually no information pertaining to its saturated thickness.   
 
The few SWC borings in this area indicate that upper aquifer grain size decreases in a southerly 
direction.  All of the SWC boring logs for the northern half of the area describe the upper aquifer 
sediments as predominantly gravel or sand and gravel, while less than half of the SWC logs for 
the southern half of the area describe the upper aquifer as gravelly.  The remaining SWC logs 
for the southern half of the area list the dominant grain size as fine to coarse sand.  Saturated 
thickness, based on the eight observation wells in the area, ranges from 7 to 48 feet (Figure 15). 
 
Five borings suggest that there may be a long, narrow, east-west trending, sand and gravel 
aquifer roughly 130 feet below the land surface that follows the course of the ancestral Wing 
River (Figures 13 and 16).  However, the presence of a large, confined aquifer within the glacial 
overburden has not been confirmed.  Additional test drilling is needed to characterize the 
saturated thickness of the upper aquifer and confirm the presence or absence of a significant 
lower aquifer.   
 
Northern Area:  The north central portion of the study area is another relatively unknown and 
undeveloped region of the aquifer system that has the potential for additional groundwater 
development (Figure 30).  Nevertheless, only a small portion of this area is covered with soils 
that are suited for irrigated agriculture (Figure 4).  Six borings in the northern area encountered 
95 to 245 feet of saturated sands and gravels.  At present, it is believed that the sands and 
gravels are concentrated in discrete channels.  The deeper channel deposits constitute the 
northern reaches of the lower aquifer (Figure 13).  The shallow channels are part of the upper 
aquifer and coalesce to the south as they merge to form the Streeter outwash plain (Figures 15, 
A14, A16, and A17).     
 
Most of the land surface in the northern area is covered with collapsed till, and there are too few 
borings to accurately map the locations of the buried channels.   The boring logs for this area 
show that the upper aquifer channels tend to be gravelly with till interbeds.  Upper aquifer 
thickness is highly variable, ranging from less than 10 feet to more than 100 feet, and it appears 
that aquifer thickness is greatest in T143N R70W (Figure 15). 
 
The lower aquifer stretches from north to south across T143N R71W (Figure 13).  There is also 
a narrow, east-west trending branch that runs along the southern boundary of T143N R70W.  
The upper surface of the lower aquifer lies approximately 170 to 220 feet below the land 
surface.  The main body of the lower aquifer is 15 to 25 feet thick and consists of fine to coarse 
sand.  The east-west trending offshoot is up to 170 feet thick and includes interbedded till, sand, 
and gravel; muddy sands and gravels; and thick sequences of clean sands and cobbly sands 
and gravels.   
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Eastern Area:  The far eastern end of the study area also has the potential for additional 
development (Figure 30).  Test drilling has revealed three significant aquifers west of Highway 
68 (Figures A4, A5, and A21).  East of Highway 68, there is a long, narrow, northeast-southwest 
trending band of gravelly outwash that was deposited in a valley between till-covered, ice-cored 
ridges.  Over time, the ice beneath the ridges melted away, leaving the gravel train at a higher 
elevation than the surrounding till.  The saturated thickness of this topographic inversion feature 
is not known, and test holes at 14206812CDD and 14206814CCD suggest there may be a 
significant confined aquifer below this feature. 
 
There are only 13 SWC drill sites in the eastern area.  As with the northern area, the upper 
aquifer is not always exposed at the land surface, aquifer geometries are not well known, and 
aquifer thicknesses are highly variable.  Total thickness ranges from less than 20 feet to nearly 
230 feet, and appears to be greatest in the southeast quarter of T141N R69W (Figure 31).  
Lithologies in the two upper aquifers are fairly uniform, consisting of clean sands and gravels.  
Lithologies in the lower aquifer are more variable and include muddy fine sand, clean sand and 
gravel, and interbedded sand, gravel, and clay. 
 
Aquifer Yield.  There are no field measurements of aquifer yield in the western, northern, and 
eastern areas apart from four, poorly-controlled, single well pumping tests conducted by private 
well drillers.  In the western area, a test well at 14207432DDC was pumped for an unknown 
length of time at 50 gallons per minute, and the water level dropped 3.5 feet.  In the northern 
area, a test well at 14307035CBAAD was pumped for one hour at 44 gpm, and the water level 
dropped 0.9 ft.  In the eastern area, the irrigation well at 14106912ACC was pumped for 5 hours 
at 1600 gpm, and the water level dropped 8 ft; its replacement well (14106912ACBA) was 
pumped for one hour at 1500 gpm, and the water level dropped 53 ft.   
 
Table 2 presents estimates of aquifer transmissivity for the three areas of interest.  In the 
western area, mean transmissivities are less than the mean determined from the SWC pumping 
test near Kunkel Lake (Krogstad, 2004), because the aquifers are thinner in the western area 
borings.  In the northern and eastern areas, mean transmissivities for the lower aquifer are in 
good agreement with the mean determined from the pumping test.  In contrast, the means for 
the upper aquifer are higher and reflect the greater thicknesses and coarser textures of the 
upper aquifer sediments in these two regions of the aquifer system. 
 
 
 
Table 2.  Estimated transmissivity (ft2/d)1 for areas with potential for additional development 

  Minimum Maximum Mean  n2 

Western Area Upper Aquifer 900 13300 4700 20 
 Lower Aquifer 1000 5500 2900 6 
Northern Area Upper Aquifer 1400 70100 14400 28 
 Lower Aquifer 1500 21800 6400 11 
Eastern Area Upper Aquifer 2700 25500 11700 10 
 Lower Aquifer 2600 14000 6900 8 
1 Calculated from the information in Table 1 along with boring log observations of particle size and 

aquifer thickness 
2 SWC borings that lie within the water level interpolation domain and contain at least ten feet of 

saturated sand and/or gravel 
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FUTURE RESEARCH 
 

Field Studies.  Additional test drilling and aquifer testing are needed in the three areas with the 
best potential for groundwater development (Figure 30).  Additional drilling is needed in the 
western area to characterize the lateral extent and saturated thickness of the upper aquifer and 
to confirm the presence or absence of a significant lower aquifer.  Test drilling and aquifer 
testing are needed in the northern area to delineate the buried sand and gravel channels.  And, 
test drilling and aquifer testing are needed in the eastern area to better understand the 
geometries and hydraulic properties of the aquifers east of the Apple Creek watershed divide 
and to determine the relationships between the aquifers on both sides of the divide.  
 
Laboratory Analyses.  A deuterium and oxygen-18 isotope study of the groundwater in the 
upper and lower aquifers would greatly enhance our understanding of the nature and extent of 
connections between the upper and lower aquifers. 
 
Regional Scale Numerical Modeling.  An ongoing task of the Water Appropriations Division of 
the SWC is to develop regional scale models for its major aquifer systems.  There are several 
challenges to developing a regional scale (approximately 14 township) model of the Central 
Dakota Aquifer System in northern Kidder and northwestern Stutsman Counties that could be 
used to make site-specific management decisions.  The first challenge, of course, is the issue of 
scale.  In general, regional scale models are best suited to answering regional scale, rather than 
site scale questions.  One approach to dealing with this scale discrepancy is to imbed one or 
more site models within the domain of the regional model.  Then the primary purpose of the 
regional model is to define the boundary conditions for the imbedded site models.   
 
Remaining challenges to developing a regional scale model arise primarily from the complex 
nature of the ice-wasting depositional environment, the uneven distribution of available data, 
and the limitations of deterministic, finite difference modeling.  These challenges include:  

1) how to model the highly irregular land surface topography and assign topographically 
sensitive variables such as recharge and evapotranspiration when land surface elevation 
often varies more than 100 feet within a section;  

2) how to deal with uncertainty regarding the horizontal and vertical connectedness of the 
collapsed and buried outwash in large areas with relatively few borings and no pumping 
data; 

3) how to represent Chase Lake, given its importance in water management decisions and 
the lack of information regarding lakebed properties and lake-aquifer connectivity; and  

4) how to deterministically model the extreme aquifer heterogeneity visible on many cross 
sections in Appendix A. 

 
Sub-regional Scale Numerical Modeling.  There are two important and unanswered water 
management questions in northern Kidder and northwestern Stutsman Counties that could be 
evaluated with numerical models: 1) is the lower aquifer in the Kunkel Lake area fully 
appropriated, and 2) what is the impact of irrigation on water levels in Chase Lake?  The Kunkel 
Lake and Chase Lake area models could be imbedded in a 14 township regional model, but the 
regional model would not be required to address these questions.  Both areas could be modeled 
separately, and model boundaries that were neither physical nor hydrologic could be placed far 
enough from their respective areas of interest that they would not affect the simulation results in 
the areas of interest.   
 
In the Kunkel Lake area, there are two pending or deferred groundwater permit applications and 
two permits with groundwater held in abeyance.  The upper aquifer is generally too thin to 
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support irrigation, so abstraction from the lower aquifer is the only viable option.  Unfortunately, 
existing appropriation from the lower aquifer is causing drawdowns in excess of 60 feet in 
observation wells, and drawdowns in production wells are significantly greater.  Consequently, it 
is not clear whether or not there is additional room for development.  The large number of 
existing irrigation wells and the complexity of the aquifer system near Kunkel Lake call for a 
numerical rather than analytical approach to the problem.  Since the land surface is relatively 
flat and there are many observation wells in the area, the only significant obstacle to developing 
a numerical model is the complexity of the aquifer system near Kunkel Lake.  The best way to 
deal with the heterogeneity may be to model it stochastically rather than deterministically.   
 
The situation at Chase Lake is very different from Kunkel Lake.  There is ample groundwater to 
support additional irrigation, but the US Fish and Wildlife Service (USFWS) is understandably 
concerned about the effects of current and future development on water levels in Chase Lake.  
The Chase Lake National Wildlife Refuge was established in 1908 by President Theodore 
Roosevelt to protect the American White Pelican.  In 2006, 34,604 breeding pelicans were 
tallied at the refuge.  The birds nest on islands in the large and shallow lake, and small changes 
in the lake level can cause significant changes in the area available for nesting and the ability of 
predators to access the islands.   
 
Any assessment of the inflow to Chase Lake will be encumbered by uncertainty regarding: 1) 
the nature and extent of the aquifer system east of the lake and whether or not it is hydraulically 
connected to the lake, 2) the geometry of the lower aquifer north of the lake and whether or not 
the lower aquifer groundwater discharges to the lake, and 3) the hydrogeologic properties of the 
sediments that lie beneath the lake.  Additional fieldwork in and around the refuge could reduce 
the uncertainty, but the USFWS prohibits vehicle access to the refuge for test drilling and well 
installation.  Perhaps the most significant obstacle to developing a useful model of the Chase 
Lake area is the nature of the wildlife management problem.  Numerical models of complex 
hydrologic systems are not capable of accurately predicting small changes in water levels due 
to the many simplifying assumptions required to construct the models.  Since small changes in 
the lake level can have significant impacts on the area available for nesting and the ability of 
predators to access the islands, model forecasts would be too uncertain to serve as the basis 
for management decisions.  Consequently, water allocation decisions for the Chase Lake area 
should be based on simple analytical assessments, incremental development, careful 
observation, and policies that consider the relative values of local irrigation and refuge 
protection. 
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APPENDIX A 
Geologic Cross Sections 
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