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INTRODUCTION

During 1984-85 the North Dakota State Water Commission Appropriations
Division conducted a field study to collect data for a comprehensive set of soil hydraulic
properties and parameters on 11 sites near Oakes, in Dickey County, North Dakota (Fig.
1). The purpose of the data collection was to provide high quality input for modeling
studies of natural and artificial recharge. The data-acquisition program was designed to
be comprehensive, and to have broad utility, including potential incorporation into a
Jarger state, national and international user base. Data collected included: (1) site
description, (2) soil morphology and classification; (3) in-situ measured unsaturated
hydraulic conductivity [K (6/1)], water retention (8/) and diffusivity [(D(8)] in 6 to 12
inch (15 to 30 cm) depth increments; (4) laboratory water-retention curves, including 15-
bar gravimetric water content for each depth increment; (5) laboratory unsaturated
hydraulic-conductivity and diffusivity functions for the dry range for each depth
increment; (6) soil physical data, including particle-size distribution, organic carbon and
bulk density for each depth increment; (7) soil saturation extract water chemistry,
including calcium, magnesium, sodium, potassium, carbonate, bicarbonate, chloride,
sulfate, electrical conductivity, sodium-adsorption ratio, saturation water content, and pH
for each depth increment; and (8) in-situ infiltration. Except for infiltration data, these
were published as North Dakota State Water Commission Water Resources Investigation
No. 18 (Schuh, Cline and Sweeney 1991). Many of these data are now included in the
EPA's national data-base, compiled by the USDA National Salinity Laboratory, Riverside
CA. Eleven sites were measured (labeled A-K) at locations shown on Fig. 2. Site
descriptions are on Table 1.
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Figure 1. Location of the Oakes study area in relation to North Dakota
physiographic provinces (from Bluemle 1979).
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Table 1. List of measured soil series, USDA soil classifications, and locations.

USDA classifications provided by Mike Ulmer, USDA-NRCS, Bismarck (From Soil
Survey Staff 2003). Previous classifications (in italics) reprinted from WRI No. 18,
Schuh, Cline and Sweeney 1991.

Date Soil Series USDA Classification Location

A 9/28/84 Hamar Sand Sandy, mixed, frigid Typic Dickey County ND, T 130 N, Range 59 W, Sec. 26, AD [280 feet (853
to Endoaquolis m) south and 100 feet (30.5 m) west of east quarter corner.]
10/23/84 (Sandy, mixed, fiigid Typic

Haplaguoll)

B 9/28/84 Hecla Loatmy Sandy, mixed, frigid Oxyaguic Dickey County ND, T 130 N, Range 59 W, Sec. 26, AD [280 feet (85.3
to Sand Hapludolls m) south and 170 feet (51.1 m) west of east quarter comer.]
10/23/84 (Sandy, mixed Aquic Haploboroll)

© 9/28/84 Hecla Loamy Same as above Dickey County ND, T 130 N, Range 59 W, Sec. 26, AD [285 feet (86.9
to Sand m) south and 360 feet (109.7 m) west of east quarter corner.]
10/23/84

D 6/19/85 Hecla Loamy Same as above Dickey County ND, T 130 N, Range 59 W, Sec. 9, DAA [66 feet (20.]
to Sand m) south and 465 feet (135.6 m) west of east quarter corner. ]

7/31/85

E 6/19/85 Ulen Loamy- Sandy, mixed, frigid Aeric Dickey County ND, T 130 N, Range 59 W, Sec. 9, DAA [355 feet
to Fine Sand Calciaquolls (108.2 m) south and 465 feet (141.7 m) west of east quarter comer.]
7/31/85 (Sandy, firigid Aeric Calciaquoll)

F 6/19/85 Arveson Fine- Coarse-loamy, mixed, superactive, | Dickey County ND, T 130 N, Range 59 W, Sec. 9, DAA [525 feet
to Sandy frigid Typic Calciaquolis (159.9 ) south and 470 feet (143.3 m) west of east quarter comer.]
7/31/85 Loam (Coarse-loamy frigid Typic

Calciaquoll)

G 6/19/85 Heimdal Loam Coarse-loamy, mixed, superactive, | Dickey County ND, T 131 N, Range 59 W, Sec. 25, CBB [300 feet
to frigid Calcic Hapludolls (90.5 m) south and 100 feet (30.5 m) east of west quarter cormer.)
7/31/85 (Coarse-loamy mixed Udic

Haploboroll)

H 8/21/85 Stirum Fine- Coarse-loamy, mixed, superactive, | Dickey County ND, T 130 N, Range 59 W, Sec. 29, CBB [950 feet
to Sandy Loam frigid Typic Natraquolls (298.8 m) south and 650 feet (198.3 m) west of east quarter comer.]
10/23/85 (Coarse-loamy, mixed, frigid,

Typic Natraquoll)

I 8/21/85 Eckman Loam Coarse-silty, mixed, superactive, Dickey County ND, T 129 N, Range 60 W, Sec. 25, BBB [125 feet
to Jrigid Calcic Hapludolls (38.1 m) south and 75 feet (22.8 m) east of northwest cormer.]
10/23/385 (Coarse-silty, mixed, Udic

Haploboroll)

J 8/19/85 Gardena Loam Coarse-silty, mixed, superactive, Dickey County ND, T 130 N, Range 59 W, Sec. 18, CC [185 feet
to frigid Pachic Hapludolls (56.5 m) south and 90 feet (27.5 m) east of southwest corner.]
10/21/85 (Coarse-silty mixed, Pachic Udic

Haploboroll)

K 9/28/85 Exline Loam Fine, smectlitic, frigid Leptic Dickey County ND, T 130 N, Range 59 W, Sec. 20, BBB [45 feet
to Natrudolls (13,7 m) south and 90 feet (17.4 m) west of east quarter corner.
10/21/85 (Fine, monimorillonitic Leptic

Natriboroll)
RM1 | 9-10/85 Embden Conrse-loamy, mixed, superactive, | Dickey County ND, T 130 N, Range 58 W, Sec. 20, AAB [25 feet (7.6
subsoil only frigid Pachic Hapludolis m) south of surveyed SWC monitoring well location labeled
"13005820AAB"]
RM2 | 9-10/85 Alymer Mixed, frigid Aquic Dickey County ND, T 130 N, Range 58 W, Sec. 24, AAB [50 feet
subsoil only Udipsamiments (15.2 m) east of surveyed SWC monitoring well location labeled
"13005824AAB"]
RM3 | 9-10/85 Unclassified Unclassified Dickey County ND, T 130 N, Range 58 W, Sec. 31, AAB [50 feet

subsoil only

(15.2 m) east of surveyed SWC monitoring well location Tabeled
"13005831AAB"]




Most hydrologic models best employ hydraulic data in functional format. For this
reason, unsaturated soil hydraulic data were used to derive parameters for the equations
of Brooks and Corey (1964) and Van Genuchten (1978, 1980). These parameters were
published as appendicized tables to the data report (WRI No. 18). Variability of
parameters in relation to soil physical properties was discussed by Schuh et al. (1988)
and Schuh and Cline (1991).

WRI No. 18 included only hydraulic data for the desorption phase of the field
experiments. It did not include sorption hydraulic data or infiltration values. The
purpose of this supplemental report is to provide infiltration and sorption data for each of
the measured sites. Also included in this report are supplemental infiltration data
measured near Oakes as part of a project examining the feasibility of artificial recharge
(Shaver and Schuh 1990). Additional field infiltration and field and laboratory hydraulic
data have been measured at the Carrington Research Extension Center, Carrington, North
Dakota. These will be published in a separate report.

METHODS

All infiltration measurements were made using a "double-ring" system. The
purpose of the double ring is to help assure vertical flow. During infiltration into dry soil,
negative capillary pressure tends to draw water horizontally into the surrounding soil
matrix, This causes difficulty in interpreting the spatial distribution of infiltrating waters.
Swartzendruber and Olson (1961a and 1961b) found that vertical flow was seldom fully
realized using a double-ring infiltrometer, but that it was closely approximated under
conditions where the diameter (r,) of the outer ring, and a ring-diameter buffer index are
sufficiently large. The proposed ring-diameter buffer index is:

B = (r,-1)/1, (1)

where r, is the diameter of the inner. They found that the practical validity of the one-
dimensional vertical flow assumption for non-layered soils was dependent on time, depth
of the wetting front, B, and r,.

Swartzendruber and Olson (1961a) also found that sensitivity to these parameters
varied with soil texture. They found that on sandy soils one-dimensional vertical flow for
the inner ring could be assumed for very small B values (very little buffer area) provided
that r, was at least 24 inches (61 cm). For r, of 12 inches (30 c¢cm) the same assumptions
could be made if B was sufficiently large (about 0.5). Forr, < 8 inches (20 cm) no buffer
index would be sufficient to assure one-dimensional vertical flow. Swartzendruber and
Olson (1961b) indicated that the departure from vertical flow was more marked over time

and wetting depth for finer soils.



Swartzendruber and Olson (1961b) also demonstrated that wetting depth was
important. Based on data from experiments considering a maximum wetting depth of 24
inches (61 cm) they concluded that a good rule of thumb would be to allow for an outer
buffer ring radius at least equal to the depth of infiltration.

Field Instrumentation

All measurements were made using a 2-feet (31-cm) diameter inner ring. Surface
infiltration measurements at Oakes and Carrington were buffered with a 10-feet (3.1-m)
outer ring. A square wooden dike was placed around the infiltration buffer area.
Applying the rule of Swartzendruber and Olson, one-dimensional vertical flow
assumptions should be valid for about 10 ft. (3.1 m). The maximum depth of
measurement on all sites (based on neutron probe and tensiometer instrumentation) was
about 6.6 ft. (2 m), and on most sites measurement depths did not exceed 5ft (1.5m).

On all sites care was taken to avoid disturbing or compacting the soil surface.
This was done by scaffolding over the measured surface during site construction (Fig. 4).
Vegetation on site was left undisturbed within the infiltrometer.  Infiltrometers
constructed of PVC were placed into carefully cut 4-inch (10-cm) deep vertical grooves
(Fig. 3). Inside borders [0.5 inches (1.3 cm)] were packed to within one inch of the
surface, as shown on Fig. 3 and on the photo in Fig. 5. The inch nearest the surface was
sealed with plaster of Paris (Figures 3 and 6).

Plaster of Paris . .
Infiltrometer Ring

Groove

Figure 3. Illustration of infiltrometer placement procedure.

Deep subsoil infiltration measurements were taken after excavation of most soil
profiles (Sites D through K) for morphological description. The subsoil surface was
smoothed without compacting, and infiltrometers were placed on the excavated surface.
A 4-feet (1.22-m) diameter outer ring constructed of steel flashing was used for deep

measurements (Fig. 6).

Field Procedures

Infiltration measurements were accomplished by flooding both inner ring and
buffer areas to an identical depth using separate water supplies (Fig. 7). Water was
delivered to the outer ring through a perforated wooden box which attenuated the erosive
force of influent waters on the soil surface. The soil surface of the inner ring was
protected by placing burlap on the soil surface. Water was metered and water levels



Figure 4. Construction of hydraulic property measurement apparatus.

Figure 5. Placement of infiltrometer ring.



Figure 7. Operation of surface infiltration measurements.



were controlled using float valves. Water levels were maintained at 3 to 4 inches (7.5 to
10.2 cm) above the soil surface. Infiltration rates were measured using standpipes on
cylindrical reservoirs, with calibrated adjustments for the difference between reservoir
and infiltrometer areas. Reservoir diameters varied from 4 inches (10.2 cm) for soils with
slow infiltration rates to large (50-gallon drums) for sandy soils. Where slow infiltration
was occurring reservoirs were covered with polyethylene sheets to prevent evaporative
loss from the reservoir. Measurements were maintained until the profile was believed to
be fully saturated. Measurement times varied from as little as 6 h on most sandy soils
(Sites A through F) to about 30 h on loamy soils (Sites G-J), and 263 hours on a fine-
textured sodic Exline soil (Site K). Detailed soil descriptions, and soil physical and
chemical data are in Schuh, Cline and Sweeney (1991).

Functional Format

Mathematical transfer functions are useful for application of infiltration data in
modeling. All infiltration data were fitted to the functional format of Phillip (1957,
1966). Phillip derived an equation of the form:

[=St"”+At+Kt+Ct*+Df +..X, t™ )

to describe cumulative infiltration (I) into a semi-infinite homogeneous vertical soil
column having uniform moisture. This is differentiable for infiltration rates (i) as:

i=A+K+S2t"+3C2t"+2Dt+..nX, /2t (3)
In many cases a two-parameter equation:
I=St1/2+A't (4)

is sufficient to fit field data, where A' = (A + K).

In rigorous usage coefficients of the Philip equations have physical significance in
their derivations and can be used to estimate soil hydraulic parameters. For example, the
S coefficient is called "sorptivity." It is related to the soil moisture status prior to
infiltration, and can be used to calculate the [D(0)] function (Kirkham and Powers 1972).

Y2 using early time data. The slope of

Conventionally, S is estimated by plotting I vs. t
the linear curve portion nearest to t=0 is used to estimate S (Smiles and Knight 1976).
Varying approaches for determining S have been described by Kirkham and Powers
(1972), Smiles and Knight (1976), Talsma (1969) and others.

The approach of Smiles and Knight (1976) for analyzing the two parameter

equation consists of plotting:



I/t 12 vs. t 12 (5)

The advantage of this procedure is that information about the soil and infiltration physical
attributes can often be inferred. First, the authors specify that the validity of the two-
parameter model can be tested using this relationship. In some cases, anisotropy in the
measured profile, below the measured surface can be detected. Second, the point at
which Phillip's theory (Eq. 2), and long-term behavior (A approaches K) diverge can be
discerned. Where Equation 5 is linear, near t=0, Philip theory is valid. Eventually, the
curve slope increases asymptotically:

I/tl/Z = K t1/2 (6)

Thus, both cases can be separated and used to determine appropriate parameters. Where
the above graphic conditions do not exist, conditions contrary to Philip's assumptions
may exist. It is our experience, and certainly a characteristic of the data presented in this
report, that the two-parameter Phillip model works best on sandy soils, and is seldom
sufficient on finer soils. The relationship between A' and K has been described as
varying from A' = 1/3 to 2/3 K (Smiles and Knight 1976). Talsma (1969) observed that
A' was close to 1/3 K. For our data on the R1, R2 and R3 sites (Appendix), a 2/3 factor
yielded best results.

At long times, where i approximates a constant value, i itself can sometimes serve
as an estimator of K. Infiltration is driven by both gravitational gradients and by matric
potential gradients that are determined by the initial moisture disposition of the soil. As
the wetting front depth (L) advances over long times (L becomes large) the overall matric
potential gradient decreases so that the total gradient asymptotically approaches 1. Under
such conditions i must asymptotically approach K according to:

i=Q=K@+L)/L ~K(1)~K N

where Q is the internal flow rate through the soil profile. The estimated K is often
identified with K, of the soil saturation zone. However, some caution must be exercised
in such interpretations. Under field conditions, even on apparently homogeneous soil
profiles, there are usually minor impedances to flow that can desaturate the lower soil
profile. Full saturation usually only occurs from a rising water table in response to
surface infiltration. Thus, absent a rising water table, K values below the surface zone
usually correspond to a matric potential slightly below saturation. These are, however,
usually very close to K.

The Philip functions used in this report were calculated using a multiple-
regression procedure with DataDesk software (Velleman 1997). Least-squares best fits

were performed on cumulative infiltration (I vs. t) data (Eq. 2) with the constant omitted.



Parameters for i vs. t (Eq. 3) were derived by differentiating Eq. 2. Because of the
omitted constant correlation coefficient values were not computed. Most coarse-soil
profiles were adequately fitted for I and i using the two-parameter equation (Eq. 4),
while finer soils, and soils having more complex horizonation often required 3 and 4
parameter fits (Eqs. 2 and 3). In almost all cases one of the parametric combinations was
sufficient to provide an adequate functional format. Model fits were evaluated by
viewing the marginal significance of the added parameter, and by visual fit. Visual fit is
the best method for assuring that the model conforms to the data in a desired application
range. ‘

It is important that the user recognize that parameters derived using a
multivariate least-squares procedure are not identical to those applicable to
rigorous Philip theory. The user will see, for example, that sorptivity will change
with a difference in the number of parameters in the model. In some cases the
(A+K)t term (Eq. 2) is negative. Parameters optimized in this way, while providing
good transfer functions for model applications, are non-unique and cannot be used
for deriving physical properties, such as moisture retention or diffusivity functions.
If the user wishes to use equations of the Philip form to derive or compare soil
hydraulic properties, concise descriptions for procedures that can be applied to the
data provided can be found in Kirkham and Powers (1972).

Sorption Phase Properties and Parameters (8, ¢, K,)

Supplementary soil moisture (8), matric potential () expressed as cm head, and
hydraulic conductivity (K) in cm/h were measured during the sorption phase and are
reported in supplementary tables and figures. Soil volumetric water content concurrent
with infiltration was measured using a neutron probe for Sites D-K. Pre-wetting and
sorption moisture data were non-concurrent with infiltration and were sparse on Sites A-
C. No moisture measurements were collected for any of the deep infiltration
measurements. Soil water matric potential is reported for all sites. Data was concurrent
with infiltration on Sites D-K, but not on Sites A-C.

Soil matric potential was measured using tensiometers with mercury manometers.
A calibrated mbar scale (Soil Moisture Equipment Inc.™) was used for all measurements.
Matric potential head, 1p;, (where j and k are depth and time coordinates respectively)
for each depth z; , was calculated as:

'q)j,k = 102 lp*jtk —1824 - Zj (8)

where ";, is the mbar scale reading, 1.02 is the conversion from mbar to cm and 18.24
is the height above ground level of the mercury in the supply vat and at the base of the
manometer.
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Hydraulic gradients are calculated as:

Grad,, = (Hox - Y1)/ 2+ 1 (9a)
Grad i, = (Pijx - Wi /(2 -2 + 1 (9b)

where H, is the depth of the water in the infiltrometer, 1;, is matric potential (expressed
as cm head) for depth and time coordinates j and k, and z; is depth.
K is calculated as:

K0+1/2. K = i/ Grad(j+l/2, K) (10)

where i, is calculated using the best-fit function for the infiltration data corresponding to
tensiometric readings.

Interpretation and reliability of measured K depends on several factors. First, the
main water column from infiltration must have reached the bottom of the measured layer
such that steady-state flux at that depth is equal to the infiltration rate. If this condition is
not met, the measurement is spurious.

Second, it frequently occurs that the steady-state flux condition is met, but the soil
layer is not fully saturated. This can occur because of restrictions in overlying layers. In
this case a true K is measured, but it may not be a true K. Rather, the measurement is
the unsaturated K(1), corresponding to 1 in the unsaturated layer. Desaturation caused
by surface impedance has been described by Bouwer et al. (1972) and Bouma (1975) for
sewage and septic tank effluent in drainage fields. Usually the degree of desaturation is
small (< 15 cm 2, on many sands) under natural conditions. K(1) between K, and air-
entry suction is very close to K,,, and is treated as identical to K, in the models of
Burdine (1953) and Brooks and Corey (1964). Other models treat K(y) between
saturation and air entry suction as a flat portion of an approximately sigmoid curve (Van
Genuchten 1980), or as a nearly level linear relationship (Ahuja et al. 1980).

Third, tensiometric measurements must be interpreted carefully. Various
problems have been documented, including air bubble formation. When a single
tensiometer is clearly malfunctioning we discard the suspected measurement and use
composite gradient measurements for the nearest two tensiometers that are functioning
properly. For example, given measurements at 15, 30 and 45 cm, if the 30-cm
tensiometer is malfunctioning, we perform computations for a 15 to 45 cm composite
layer rather than two (15 to 30 and 30 to 45 c¢m) layers. Mean K values on K tables are
determined using only numbers that conform well to these three criteria. K is a soil
property and should be stable within a stable grain matrix. But drift in actual K can occur
due to air entrapment, oxygen respiration and consequent dissolution of carbonates,
particle movement, bacterial clogging, nitrification, dissolution or precipitation of salts,
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redox changes and filtration phenomena.
infiltration is actually a very dynamic environment, and changes in K frequently occur.

The soil environment under long-term

Table 2. Summary of data and information included in this report. Y is yes,
N is no, S is sparse measurements, F is frequent measurements.

Site | Surface | Deep | 6 | ¥ | Concurrent Other
i i Oy 1
A Y N S |8 N
B Y N S|S N
Cc Y N S|S N i, 8, and 1 for additional sorption / desorption cycles
D Y Y F|F Y
E Y Y FI|F Y
F Y Y F|F Y
G Y Y F|F Y.
H Y Y F | F Y
I Y Y F|F Y
J Y Y F|F Y
X Y Y F|F Y
RM1 N Y |N|N N
RM2 N Y N | N N
RM3 N Y N |N N
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DATA SUMMARY

A summary of ancillary site information is provided on Table 1. Sites A, B and
C, and sites D, E and F were measured as components of two soil toposequences at two
soil locations. The three Carrington measurements were also located in close proximity
to one another. Neutron-probe moisture data were collected during sorption on sites D-
K. They are not reported on sites A-C. A summary of sorption data and parameters
reported for each site is on Table 2. Sorption data and parameters are reported in the
following subsections labeled A through K.
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SITE A (Hamar Loamy Sand: Sandy, mixed, frigid Typic Endoaquoll)

Site A was located in the non-irrigated corner of a center-pivot irrigated potato
field and was covered with a young cover crop of winter barley. The location and
description are summarized on Table 1. In-situ hydraulic measurements and site
descriptions were made during late September and October, 1984. Soil samples and soil
profile descriptions were taken approximately two weeks after completion of soil
hydraulic measurements. Soil morphology, in-situ and laboratory soil moisture-retention
data, soil physical data, soil saturated paste extract water chemistry, and in-situ and
laboratory unsaturated hydraulic-conductivity data were reported by Schuh, Cline and
Sweeney (1991), pages 36-60. Soil hydraulic parameters for Brooks and Corey (1964)
and Van Genuchten (1980, 1984) functional formats are in the same report, Appendices
1, 2 and 3. Comparative analyses of unsaturated flow parameters for these data in
relation to soil textural data are discussed by Schuh and Cline (1991). Relationships
between textural models and water-retention curves for these data are discussed in Schuh,
Cline and Sweeney (1989). Infiltration rates for Site A (and also Sites B and C) were
measured in June of 1985 (eight months after the initial sorption tests) immediately
adjacent (within 5 m) of the desorption measurement site. Only surface infiltration rates
were measured.
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Infiltration, Matric Potentia} (), and Volumetric Water Content (8) Data

Table A.1. Cumulative infiltration (I), and infiltration rate (i) for the
surface of Site A (Hamar loamy sand) measured near Oakes, ND.

T I t i iy I t i
(h) |(cm) |(hours) |(cm/hour) (h) [(cm) [(hours) |(cm/hour)
0.00 0.00 | 0.00 0.00 1.83 |304 | 1.78 164
0.142% 13.59 10.0710 6.11 1.90 [31.8 | 1.87 18.1
0.189* |4.11 | 0.165 11.0 1.99 |33.2 | 1.95 15.8
0.233 [4.80 |0.211 159 2.08 |34.6 | 2.04 15.2
0.277 |5.49 |0.255 15.6 2.16 [36.0 | 2.12 17.8
0.326 [6.19 |0.301 14.2 243 |40.1 | 2.29 15.6
0.380 [6.88 | 0.353 12.8 2.55 |42.2 | 2.49 17.1
0.466 [8.26 |0.423 16.1 271 |145.0 | 2.63 16.4
0.562 [9.65 |0.514 14.4 2.85 |47.0 | 2.78 15.2
0.696 [11.7 [ 0.629 15.4 3.03 [50.1 | 2.94 17.5
0.782 [13.1 [ 0.739 16.1 3.18 [52.6 | 3.10 16.3
0.913 [15.2 [0.848 15.9 3.39 [56.0 | 3.28 16.3
1.00 |16.6 | 0.957 15.8 3.58 |59.1 | 3.49 16.2
1.16 [19.3 | 1.08 17.5 4.24 (704 | 3.95 18.9
1.25 1207 | 1.20 16.2 4.63 |76.6 | 444 16.3
1.33 ]22.1 | 1.29 15.8 4.99 182.2 | 4.81 15.2
142 |23.5 | 1.38 15.4 534 |87.7 | 5.16 16.1
149 (249 | 146 19.2 5.59 191.9 | 547 16.0
157 [26.3 | 1.53 17.7 5.86 [96.0 | 5.72 16.0
1.74 |29.0 | 1.66 16.3

* Italicized data not used for transfer functions
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Figure A.1. Cumulative infiltration (I) and Philip (1957)
parametric function for soil surface on Site A.
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Figure A.2. Infiltration rate (i) and Philip (1957)
parametric function for soil surface on Site A.
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Table A.2. Soil water matric potential (in cm head units) during
infiltration (sorption).

Replicate 1

Depth | 152 | 304 45.7 60.8 | 76.2 | 91.4 | 106.7 | 121.9 | 137.1
(cm)
=
Time
()
0 49 20 -144.1 | -59.7 | -59.6 | -47.4 | 40.8 | -35.8 | -38.4
2.5 11 7.9 -2.4 65.8 | -13.7 | -17.9 | -179 | -16.9 -5.7
7 11 7.9 -3.4 66.8 | -14.2 | -13.8 | -7.7 -0.6 10.6
8.73 11 7.9 -4.4 34.2 | -13.7 | -12.8 0.5 13.7 12.7
10.17 1hil 7.9 -3.4 17.9 45 | -11.7 | -2.6 6.5 22.9
114 | 11 |68 | 24 |17 | -55 [-107]-15 | 7.6 | 147
1213 | 11 [ 79 | 64 | 117 | -7.6 [-11.7] 26 | 7.6 | 147
1277 | -114 | 24 | 115 | 26 | -11.6[-128 [ 36 | 45 | 157
Replicate 2
Depth | 152 | 304 457 | 60.8 76.2 | 914 106.7 | 121.9 | 137.1
(em)
-
Time
(h)
0 -7.4 -106.4 | -54.4 | -59.7 | -59.1 | -50 -38.3 | -37.3 | -36.8
2.48 39 4.8 4.8 -1.7 -11.6 | -18.9 | -20.9 | -18 -8.9
6.87 49 4.8 4.8 -7.7 -10.6 | -15.8 | -15.8 | 4.7 10.6
8.6 18.2 | 25.2 2.8 -1.7 -10.6 | -14.8 | -10.7 | -1.6 13.7
10.2 2.9 4.8 0.7 -8.7 -11.6 | -13.8 | -10.7 | -0.6 14.7
1135 | 2.9 5.8 0.7 -9.7 -10.6 | -13.8 | -10.7 | -1.6 14.7
12 0.8 3.8 -0.3 -9.7 -10.6 | -13.8 | 9.7 0.6 15.7
1272 | -11.4 | -7.45 -16.6 | -20.9 | -13.8 | -15.8 | -8.7 0.4 14.7

Table A.3. Soil volumetric water content during infiltration (sorption).

Not Measured on Site A
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Hydraulic Gradient Measurements

During sorption of an unsaturated soil layer hydraulic gradients can temporarily
increase as moisture enters the upper boundary of the layer. They then decrease as the
wetting front passes the bottom of the layer, and approach a constant value when steady-
state conditions are approximated. For a homogeneous soil profile under unsaturated
soil-moisture conditions and where flux is limited by an overlying impeding layer,
hydraulic gradients tend to approach a constant value near 1, and differences in flux are
accommodated by changes in K(y) with variation of saturation state. Where impeding
boundaries occur steady-state gradients tend to be larger, while they tend to be
somewhat lower just above the boundaries because of increased moisture near the lower
boundaries. During steady-state conditions caused by surface infiltration gradients tend
to be lower in deep soil profiles approaching the water table.

Steady-state conditions appear to prevail to 15 cm within two hours, to 76 cm
within three hours, and in all layers below at > 10 hours on Replicate 1 and > 8 hours on
Replicate 2. Decreasing gradients below 106 cm are likely caused by proximity to the
water table.
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Hydraulic Gradient
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Figure A.3 Vertical hydraulic gradients during wetting
and sorption of site A.
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Hydraulic Conductivity

Combined tensiometric data and infiltration rates can be used to calculate
hydraulic conductivity for each layer during infiltration, provided flow through the
measured layer is at steady state.

Hydraulic conductivity (K) on Site A is measured by matching the i vs. t function
(Figure A.2) to the time sequence of the measured gradients. K(sat/y) are measured as
1/grad at times when gradients appear to be at steady state for each specified layer. Time
correspondence should not be a problem because i reaches steady state quickly.

K is a soil property and should be stable and consistent as long as the soil pore-
structure and the air and fluid composition within it remains constant. Infiltration,
however, is a highly complex process and K(satp) can change through modifying
processes that include air entrapment ahead of or within the wetting front, purging of
entrapped air, soil swelling, soil slaking or displacement during infiltration, particulate
clogging, microbiological processes during long-term infiltration.

Steady-state K values are on Table 4. The measured K values may be saturated
(K if the layer is fully saturated, or unsaturated [K(y)]. Fully saturated conditions
generally occur when a soil profile saturates from the bottom up. Unsaturated conditions
occur where an impeding layer causes perching of water and desaturation of the
underlying sotl. The saturation state (s for saturated) and corresponding matric potential
(y) for unsaturated values are included with mean K values. Standard error of the mean,

and coefficient of variation are also included.



Table A.4. Vertical hydraulic conductivity (cm/h) during infiltration (sorption).
(s) is saturated, (-y) is corresponding matric potential expressed as cm head.

Replicate 1

Depth | 0-15.2 | 15.2- | 30.4- | 45.7- | 76.2- | 91.4- | 106.7- | 121.9-

(cm) 304 45.7 76.2 91.4 | 106.7 | 121.9 137.1
>

Time

(h)
7 23.3 4.05 8.96 12.4 - - - =

8.73 23.2 3.24 | 931 15.6 - - - -
10.17 | 23.2 2.7 10.1 14.7 12,1 | 40.9 40.2 30.6
114 23.2 231 | 835 | 156 12.7 | 40.9 48.2 30.5
12.13 | 7.46* | 2.02 10.1 16.2 151 | 40.9 34.4 61.3
12797 | 234 | 8.17* | 9.78 11.9 129 | 163* | 174 62.3
K 20.6 375 | 943 144 | 13.2 | 347 35 46.2
(s) () | <0 | ¢7) | (10) | (-7) (s) (s)
SE 263 | 0.932 | 0.284:] 0.741 | 0.656 | 6.15 6.53 9.02
CvV 0.313 | 0.609 | 0.074 | 0.126 | 0.099 | 0.354 | 0.373 | 0.391

Replicate 2

Depth | 0-15.2 | 15.2- | 30.4- | 45.7- | 60.8- | 76.2- | 91.4- | 106.7-
(cm) 304 | 457 | 60.8 | 762 | 914 | 106.7 | 121.9
>

Time
(h)
6.87 - 1.25 6.54 - - - - -
8.6 13.2 1.16 12.8 10 13.6 14,2 20.3 48.2
10.2 13.2 1.08 12,1 9.64 15.3 13.4 20.3 40.2
11.35 11.8 1.01 12.7 9.99 15.3 134 22.1 40.2
12 7.46 0.952 | 10.1 12.6 30.9 14.2 30.5 40.2
12.72 14 1.49 16.3 8.98 i3 11 14.5 20.3
K 11.9 1.16 11.8 10.2 17.6 132 21.5 37.8
(s) (s) (s) -7y | 1) | (13) | (-12) (-5)
SE 1.17 0.079 | 133 | 0.618 | 3.35 | 0.588 | 2.38 4.65
CV 0.22 0.168 | 0.276 | 0.135 | 0.425 | 0.099 | 0.268 | 0.275
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SITE B (Hecla Loamy Sand: Sandy, mixed, frigid Oxyaquic Hapludoll)

Site B was located in the non-irrigated corner of a center-pivot irrigated potato
field, and was covered with a young cover crop of winter barley. The location and
description are summarized on Table 1. In-situ hydraulic measurements and site
descriptions were made during late September and October, 1984. Soil samples and soil
profile descriptions were taken approximately two weeks after completion of soil
hydraulic measurements. Soil morphology, in-situ and laboratory soil moisture-retention
data, soil physical data, soil saturated-paste extract water chemistry, and in-situ and
laboratory unsaturated hydraulic-conductivity data were reported by Schuh, Cline and
Sweeney (1991), pages 61-82. Soil hydraulic parameters for Brooks and Corey (1964)
and Van Genuchten (1980, 1984) functional formats are in the same report, Appendices
1, 2 and 3. Comparative analyses of unsaturated flow parameters for these data in
relation to soil textural data are discussed by Schuh and Cline (1991). Relationships
between textural models and water-retention curves for these data are discussed in Schubh,
Cline and Sweeney (1989). Infiltration rates for Site B (and also Sites A and C) were
measured in June of 1985 (eight months after the initial sorption tests) immediately
adjacent (within 5 m) of the desorption measurement site. Only surface infiltration rates
were measured.
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Infiltration, Matric Potential (\), and Volumetric Water Content (8) Data

Table B.1. Cumulative infiltration (I), and infiltration rate
(i) for the surface of Site B (Hecla loamy sand) measured
near Qakes, ND.

() |(em) | (b)  |(cm/h) () [(em) (hi) (cm/h)

0.00 | 0.00 | 0.00 0.00 2.13 [ 393 | 2.06 | 18.6
0.0370 | 1.61 | 0.0190 | 41.5 243 449 | 228 | 184
0.0880 | 3.35 | 0.0630 [ 34.2 2651490 ] 254 | 194
0.152 | 473 | 0.120 | 218 295 | 546 | 2.80 | 182
0247 | 611 ] 0.199 | 145 334 | 615 | 3.14 | 18.1
0.327 | 750 | 0.287 | 17.3 3.57 | 65.6 | 3.45 | 18.1
0.399 | 888 | 0.363 | 19.2 395 | 726|376 | 17.8
0.488 | 103 | 0443 | 15.6 424 | 78.1 | 4.10 | 19.0
0.563 | 11.7 | 0.526 | 183 458 | 83.6 | 441 | 16.5
0.713 | 144 | 0.638 | 18.5 470 | 864 | 464 | 224
0.867 | 17.2 | 0.790 | 18.0 5.06 933|488 | 195
1.04 200 | 0955 | 159 543 | 100 | 5.24 | 185
127 | 24.1 1.16 18.0 574 | 106 | 5.59 | 18.1
136 | 255 | 132 164 6.06 | 111 | 590 | 17.0
151 283 | 1.44 17.6 6.19 | 114 | 6.13 | 21.9
167 |31.0 | 159 17.6 6.34 | 117 | 626 | 183
1.83 [338 | 1.75 18.0 641 | 118 | 638 | 19.2
198 |366 | 190 17.5
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Figure B.1. Cumulative infiltration (I) and Philip (1957)
parametric function for soil surface on Site B.
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parametric function for soil surface on Site B.
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Table B.2. Soil water matric potential (in cm head units) during infiltration (sorption).
Times are referenced to initiation of desorption (infiltration ends) at t=0. The soil
profile is saturated to the fullest extent, and approximates steady-state conditions.

Replicate 1

Depth 152 | 304 | 457 | 60.8 | 76.2 | 91.4 | 106.7 | 137.1
{cm) >

Time (h)

-0.63 g -6 -8 -15 -18 | -19 | -24 -15
(t=0) -19 | -19 | -18 -19 | -18 | -22 | -25 -18
Replicate 2

Depth 152 | 304 | 457 | 60.8 | 76.2 | 91.4 | 106.7 | 137.1
(cm) >

Time (h)

-0.63 -19 | 27 | - 25 | -29 | -32 | -29 -27
(t=0) -25 -33 - -30 | -34 | -38 -33 -28

Table B.3. Soil volumetric water content during infiltration (sorption). Times are
referenced to initiation of desorption (infiltration ends) at t=0. The soil profile is saturated
to the fullest extent, and approximates steady-state conditions.

Replicate 1

Depth > 30.48 45.72 60.96 76.2 91.44 106.7 121.9 137.2

(cm)

Time (h)

-0.48 0.3787 0.3607 0.2427 0.35 0.3445 0.3441 0.3492 0.3683

=0 0.3666 0.3496 0.354 0.3504 0.3329 0.3477 0.35 0.3662
Replicate 2

Depth > | 30.48 45.72 60.96 76.2 91.44 106.7 121.9 137.2
(cm)

Time (h)
-0.48 0.3711 | 0.3567 | 0.3559 | 0.3449 | 0.3508 | 0.339 | 0.3719 | 0.3667
=0 0.3522 | 0.3423 | 0.3396 | 0.3396 | 0.3326 | 0.3443 | 0.3533 | 0.3785
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Hydraulic Gradient Measurements

During sorption of an unsaturated soil layer hydraulic gradients can temporarily
increase as moisture enters the upper boundary of the layer. They then decrease as the
wetting front passes the bottom of the layer, and approach a constant value when steady-
state conditions are approximated. For a homogeneous soil profile under unsaturated soil
moisture conditions and where flux is limited by an overlying impeding layer, hydraulic
gradients tend to approach a constant value near 1, and differences in flux are
accommodated by changes in K(1p) with variation of saturation state. Where impeding
boundaries occur steady-state gradients tend to be larger, while they tend to be somewhat
lower just above the boundaries because of increased moisture near the lower boundaries.
During steady-state conditions caused by surface infiltration gradients tend to be lower in
deep soil profiles approaching the water table.

Hydraulic gradients in Table B.4 are at approximate steady state.

Table B.4. Vertical hydraulic gradient during infiltration (sorption). Times are
referenced to initiation of desorption (infiltration ends) at t=0. The soil profile is
saturated to the fullest extent, and approximates steady-state conditions.

Replicate 1

Depth 0-15.2 15.2- 30.4- 45.7- 60.8- 76.2- 91.4- 106.7-
(cm) > 304 45.7 60.8 76.22 914 106.7 137.1
Time (h)
-0.63 1.33 1.59 1.13 2.05 1.2 1.07 1.33 0.704
(t=0) 2.78 1 0.934 2.38 0.934 1.26 1.2